Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Теория струн и свойства частиц





 

Один из самых основных вопросов всей физики стоит так: почему частицы, которые наблюдаются в природе, являются именно такими, а не какими-нибудь другими? Например, почему электрон обладает именно такой массой, а u -кварк имеет именно такой электрический заряд? Интерес к этим вопросам не просто академический, он отражает очень важный факт, что упоминался ранее. Если бы у частиц были другие свойства — например, будь электрон чуть тяжелее или легче, или электростатическое отталкивание между электронами сильнее или слабее, — ядерные процессы, питающие звёзды, подобные нашему Солнцу, были бы нарушены. Вселенная без звёзд была бы совсем другой.43 Очевидно, что без солнечного света и тепла не возникла бы сложная цепочка событий, приведшая к возникновению жизни на Земле.

Поэтому возникает фундаментальный вопрос: как с помощью ручки, бумаги и, возможно, компьютера, а также руководствуясь нашим пониманием законов природы, вычислить свойства частиц и получить результаты, которые согласуются с экспериментальными данными. Если нам удастся ответить на этот вопрос, это станет одним из самых важных шагов на пути к пониманию того, почему Вселенная такая как она есть.

В рамках квантовой теории поля ответа на этот вопрос нет и не может быть. В квантовой теории поля измеренные свойства частиц выступают в качестве исходных данных — на их основе строится и определяется сама теория, — поэтому теория успешно работает с широким спектром значений масс и зарядов.44 Если вообразить мир, где масса электрона или его заряд будут меньше или больше, чем в нашем, то квантовая теория поля опишет явления в таком мире, не моргнув глазом; для этого всего лишь надо будет подстроить значения параметров в уравнениях теории.

Сможет ли теория струн справиться с этим лучше?

Одна из самых красивых черт струнной теории (то, что более всего меня поразило, когда я приступил к её изучению) состоит в том, что свойства частиц определяются размером и формой дополнительных измерений. Поскольку струны очень малы, они вибрируют не только в трёх привычных больших измерениях, но и в малых, свёрнутых измерениях. Подобно тому как поток воздуха, проходящий сквозь духовой инструмент, приобретает колебательное движение, характер которого определяется геометрической формой инструмента, колебания струн в струнной теории определяются формой скрученных измерений. Вспоминая, что вибрационное поведение струн определяет свойства частиц, такие как массу и электрический заряд, мы видим, что эти свойства диктуются геометрией дополнительных измерений.

Поэтому если достоверно известно, как выглядят дополнительные измерения в теории струн, то можно легко предсказать любые свойства вибрирующих струн и, следовательно, все свойства элементарных частиц, порождённых колебаниями струны. Трудность, как и раньше, в том, что никто не знает, какова точная геометрическая форма дополнительных измерений. Уравнения теории струн накладывают математические ограничения на геометрию дополнительных измерений и требуют, чтобы они принадлежали частному классу так называемых пространств Калаби–Яу (на математическом жаргоне многообразия Калаби–Яу), названных в честь математиков Эудженио Калаби и Шин-Туна Яу, которые изучали их свойства задолго до осознания важности их роли в теории струн (рис. 4.6). Проблема в том, что нет какой-то одной, выделенной формы Калаби–Яу. Наоборот, подобно музыкальным инструментам, эти пространства имеют разные размеры и контуры. И так же как разные музыкальные инструменты издают разные звуки — дополнительные измерения, различающиеся по размерам и по форме (а также по другим параметрам, с которыми мы встретимся в следующей главе), порождают разные вибрации струн и, следовательно, разные наборы свойств частиц. Отсутствие однозначной спецификации для дополнительных измерений является главным камнем преткновения, который не позволяет струнным теоретикам делать конкретные предсказания.

 

Рис. 4.6. Крупный план пространственной структуры в теории струн, где показан пример дополнительных измерений, закрученных в одно из пространств Калаби–Яу. Подобно набивке на основе ковра, пространство Калаби–Яу прикреплено в каждой точке трёх привычных больших измерений (представленных двумерной решёткой), однако для простоты восприятия эти пространства размещены только в узлах решётки

 

Когда я начал заниматься теорией струн в середине 1980-х годов, было известно небольшое количество пространств Калаби–Яу, поэтому можно было надеяться проанализировать каждое из них и соотнести с известной физикой. Моя диссертация стала одним из самых первых шагов в этом направлении. Спустя несколько лет, когда я стал постдоком (под руководством того самого Яу из Калаби–Яу), число пространств Калаби–Яу возросло до нескольких тысяч, что стало серьёзной задачей для обстоятельного изучения — но ведь для этого и существуют студенты! Время шло и число страниц в каталоге пространств Калаби–Яу только увеличивалось; как будет видно в главе 5, теперь их больше чем песчинок на пляже. На всех пляжах вместе взятых. Даже представить невозможно. И речи быть не может о том, чтобы математически рассмотреть каждое на роль дополнительных измерений. Поэтому струнные теоретики продолжают поиск математической подсказки, которая позволит выделить из всех возможных пространств Калаби–Яу то самое, единственное. Пока это никому не удалось.


Поэтому теория струн пока не реализовала свои возможности по объяснению свойств фундаментальных частиц. В этом отношении теория струн до сих пор не имеет особых преимуществ перед квантовой теорией поля.45

Однако, следует помнить, что слава теории струн в первую очередь основана на том, что она может решить центральную дилемму теоретической физики XX столетия — непримиримость общей теории относительности и квантовой механики. В рамках теории струн общая теория относительности и квантовая механика наконец-то гармонично соединяются. Именно в этом состоит самое важное преимущество теории струн, позволяющее обойти основную преграду, препятствующую применению стандартных методов квантовой теории поля. Если бы мы обладали лучшим пониманием математического аппарата теории струн и могли бы однозначно выбрать форму дополнительных измерений, ту, которая приведёт к объяснению наблюдаемых свойств частиц, это был бы феноменальный триумф. Однако нет никакой гарантии, что теория струн сможет с этим справиться. Более того, нет никакой необходимости требовать этого от неё. Квантовая теория поля заслуженно считается в высшей степени успешной теорией, хотя она не может объяснить фундаментальные свойства частиц. Если теория струн тоже не сможет это объяснить, но при этом ключевым образом продвинется намного дальше квантовой теории поля, включив в себя гравитацию, то только это уже будет монументальным достижением.

Действительно, в главе 6 мы увидим, что в космосе, заполненном параллельными мирами — как следует из некоторых современных версий теории струн, — было бы совершенно неправильно думать, будто математический анализ выявит единственную форму дополнительных измерений. Наоборот, подобно тому как множество различных форм ДНК приводят к разнообразию жизни на Земле, огромное разнообразие форм дополнительных измерений может приводить к множеству вселенных, населяющих струнную мультивселенную.

 







Date: 2015-09-05; view: 376; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию