Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Пример расчета надежности
Структурная схема надежности приведена на рис 7.1. Значения интенсивности отказов элементов даны в
1. В исходной схеме элементы 2 и 3 образуют параллельное соединение. Заменяем их квазиэлементом А. Учитывая, что
2. Элементы 4 и 5 также образуют параллельное соединение, заменив которое элементом В и учитывая, что
3. Элементы 6 и 7 в исходной схеме соединены последовательно. Заменяем их элементом С, для которого при
4. Элементы 8 и 9 образуют параллельное соединение. Заменяем их элементом D, для которого при
5. Элементы 10 и 11 с параллельным соединением заменяем элементом Е, причем, так как
6. Элементы 12, 13, 14 и 15 образуют соединение “2 из 4”, которое заменяем элементом F. Так как
7. Преобразованная схема изображена на рис. 7.2. 8. Элементы A, B, C, D и Е образуют (рис. 7.2) мостиковую систему, которую можно заменить квазиэлементом G. Для расчета вероятности безотказной работы воспользуемся методом разложения относительно особого элемента (см. раздел 3.4), в качестве которого выберем элемент С. Тогда
где
Учитывая, что
9. После преобразований схема изображена на рис. 7.4.
10. В преобразованной схеме (рис. 7.4) элементы 1, G и F образуют последовательное соединение. Тогда вероятность безотказной работы всей системы
11. Так как по условию все элементы системы работают в периоде нормальной эксплуатации, то вероятность безотказной работы элементов с 1 по 15 (рис. 7.1) подчиняются экспоненциальному закону:
12. Результаты расчетов вероятностей безотказной работы элементов 1 - 15 исходной схемы по формуле (7.10) для наработки до 13. Результаты расчетов вероятностей безотказной работы квазиэле-ментов A, B, C, D, E, F и G по формулам (7.1) - (7.6) и (7.8) также представлены в таблице 7.1. 14. На рис. 7.5 представлен график зависимости вероятности безотказной работы системы P от времени (наработки) t. 15. По графику (рис. 7.5, кривая P) находим для 16. Проверочный расчет при 17. По условиям задания повышенная Таблица 7.1 Расчет вероятности безотказной работы системы
Рис 7.5. Изменение вероятности безотказной работы исходной системы (Р), системы с повышенной надежностью (Р`) и системы со структурным резервированием элементов (Р``). 18. Расчет показывает (таблица 7.1), что при 19. Для того, чтобы при
При этом значении элемент F останется самым ненадежным в схеме (рис. 7.4) и рассуждения в п.18 останутся верными. Очевидно, значение 20. Для определения минимально необходимой вероятности безотказной работы элементов 12 - 15 (рис. 7.1) необходимо решить уравнение (7.6) относительно
Рис. 7.6. Зависимость вероятности безотказной работы системы “2 из 4” от вероятности безотказной работы ее элементов.
21. По графику при 22. Так как по условиям задания все элементы работают в периоде нормальной эксплуатации и подчиняются экспоненциальному закону (7.10), то для элементов 12 - 15 при
23. Таким образом, для увеличения 24. Результаты расчетов для системы с увеличенной надежностью элементов 12, 13, 14 и 15 приведены в таблице 7.1. Там же приведены расчетные значения вероятности безотказной работы системы “2 из 4” F` и системы в целом P`. При 25. Для второго способа увеличения вероятности безотказной работы системы - структурного резервирования - по тем же соображениям (см. п. 18) также выбираем элемент F, вероятность безотказной работы которого после резервирования должна быть не ниже 26. Для элемента F - системы “2 из 4” - резервирование означает увеличение общего числа элементов. Аналитически определить минимально необходимое количество элементов невозможно, т.к. число элементов должно быть целым и функция 27. Для повышения надежности системы “2 из 4” добавляем к ней элементы, идентичные по надежности исходным элементам 12 - 15, до тех пор, пока вероятность безотказной работы квазиэлемента F не достигнет заданного значения. Для расчета воспользуемся комбинаторным методом (см. раздел 3.3): - добавляем элемент 16, получаем систему “2 из 5”:
- добавляем элемент 17, получаем систему “2 из 6”:
- добавляем элемент 18, получаем систему “2 из 7”:
28. Таким образом, для повышения надежности до требуемого уровня необходимо в исходной схеме (рис. 7.1) систему “2 из 4” достроить элементами 16, 17 и 18 до системы “2 из 7” (рис. 7.7). 29. Результаты расчетов вероятностей безотказной работы системы “2 из 7” F`` и системы в целом P`` представлены в таблице 7.1. 30. Расчеты показывают, что при 31. На рис. 7.5 нанесены кривые зависимостей вероятности безотказной работы системы после повышения надежности элементов 12 - 15 (кривая Выводы: 1. На рис. 7.5 представлена зависимость вероятности безотказной работы системы (кривая 2. Для повышения надежности и увеличения 50% - наработки системы в 1.5 раза (до а) повышение надежности элементов 12, 13, 14 и 15 и уменьшение их отказов с б) нагруженное резервирование основных элементов 12, 13, 14 и 15 идентичными по надежности резервными элементами 16, 17 и 18 (рис. 7.7). 3. Анализ зависимостей вероятности безотказной работы системы от времени (наработки) (рис. 7.5) показывает, что второй способ повышения надежности системы (структурное резервирование) предпочтительнее первого, так как в период наработки до
Таблица 6.1 Численные значения параметров к заданию
Date: 2015-09-05; view: 1127; Нарушение авторских прав |