Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Ошибка игрока
На ярмарках, в казино, в парках и в телевизионных шоу пользуется популярностью игра под названием «Колесо Фортуны». Имеется большое колесо, которое можно вращать. Колесо разделено на множество пронумерованных секторов, как колесо рулетки. Резиновый указатель показывает, какой номер выиграл. Предположим, что ваша подруга Ванда решила подойти к «Колесу Фортуны» с научной точки зрения. Она села рядом с колесом и стала записывать все выигравшие номера. Допустим, что Ванда записала следующий набор чисел: 3, 6, 10, 19, 18, 4, 1, 7,7,5,20, 17,2, 14, 19, 13,8, 11, 13, 16, 12, 15, 19, 3, 8. После тщательного изучения этих чисел она заявила, что при последних 25 запусках колеса ни разу не выпадало число «девять»; она собирается поставить крупную сумму на «девять», так как теперь вероятность появления этого числа значительно возросла. Согласны ли вы с тем, что это надежная ставка? Если вы ответили «да», то совершили ошибку, которая очень часто встречается при изучении законов вероятности. «Колесо Фортуны» не обладает памятью и «не помнит», какие номера только что выиграли. Если колесо сконструировано таким образом, что выигрыш любого номера имеет одинаковую вероятность, то выпадение «девятки» равновероятно при каждом запуске колесе, независимо от того, часто или редко это число выпадало в прошлом. Люди верят, что случайные процессы, такие как вращение колеса, должны самокорректироваться таким образом, что если событие какое-то время не происходило, то вероятность его появления увеличивается. Такие неверные представления носят название ошибки игрока. Ошибку игрока можно обнаружить во многих ситуациях. Рассмотрим пример из области спорта. Иногда считают, что если игроку в бейсболе долго не удается ударить, то повышается вероятность того, что к нему придет мяч, потому что ему «полагается» удар. Один мой друг, большой любитель спорта, рассказал мне следующую историю о Доне Саттоне, бывшем подающем игроке из команды «Доджерс». В один из сезонов Саттон проиграл очень много пробежек. Он предсказывал, что за этим «спадом» в игре последует «коррекция», и он закончит сезон с обычным для себя средним результатом. К сожалению, случайные факторы не подвергаются коррекции, и, начав сезон плохо, он закончил его с результатом ниже своего обычного среднего (324:) уровня. Часто люди продолжают совершать «ошибку игрока» даже после того, как им объяснили, в чем она заключается. Студенты рассказывали мне, что хотя на интеллектуальном уровне они могут понять, что совершают «ошибку игрока», на интуитивном уровне они «нутром» чувствуют, что «так и должно быть». Для понимания законов вероятностей нередко нужно отказаться от своих интуитивных предчувствий, поскольку они часто бывают неверными. Давайте рассмотрим другой пример. У Уэйна и Марши четыре сына. Хотя они вообще-то не хотят иметь пятерых детей, обоим всегда хотелось иметь дочку. Следует ли им планировать завести еще одного ребенка, поскольку сейчас, при условии, что первые их четверо детей — все мальчики, рождение дочери более вероятно? Если вы поняли, в чем заключается «ошибка игрока», то вы признаете, что при пятой попытке, так же как и при каждой из первых четырех, рождение дочери так же вероятно, как и рождение сына. (На самом деле из-за того, что мальчиков рождается чуть больше, чем девочек, вероятность рождения мальчика несколько выше, чем вероятность рождения девочки.) У «ошибки игрока» существует и оборотная сторона — некоторые убеждены, что события происходят полосами. Рассмотрите следующие два варианта. А. Баскетболистка совершила 2 или 3 последних броска мимо кольца. Она собирается бросать снова. Б. Баскетболистка 2 или 3 раза подряд попала в кольцо. Она собирается бросать снова. В каком случае вероятность попадания больше — в случае А или в случае Б? Джилович (Gilovich, 1991) задавал подобные вопросы опытным баскетбольным болельщикам и обнаружил, что 91% из них верит, что вероятность попадания выше в случае Б по сравнению со случаем А. Другими словами, они верят, что игрокам везет «полосами». Чтобы выяснить, существуют ли данные, подтверждающие веру в «полосы», Джилович проанализировал статистические данные по играм филадельфийской баскетбольной команды. Вот что он выяснил: · Если игрок только что попал в кольцо, 51 % следующих бросков был успешным. · Если игрок только что промахнулся мимо кольца, 54% следующих бросков были успешными. · Если игрок только что попал в кольцо два раза подряд, 50% следующих бросков были успешными. · Если игрок только что промахнулся два раза подряд, 53% следующих бросков были успешными. Эти данные не подтверждают того, что баскетболисты совершают броски «полосами». Тем не менее интервью с самими баскетболистами показало их веру в то, что успешные и неудачные броски идут «полосами». Очень трудно убедить людей в том, что случай — это просто случай; он не корректирует сам себя и не распределяет результаты «полосами». Date: 2015-09-05; view: 300; Нарушение авторских прав |