Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Нормальное распределение. Статистические гипотезы





 

Адекватное применение количественных методов, вошедших в практику социологических исследований, в той или иной степени впирается на предположение, что изучаемый признак (или сово­купность признаков) подчиняется определенному статистическому закону распределения. Таким наиболее часто встречающимся рас­пределением является нормальный закон, представление о котором дано здесь в очень краткой форме.

Вторая группа вопросов, рассмотренных в этом разделе, связана с проверкой гипотез. Можно выделить две функции статистических процедур: во-первых, это описание элементов совокупности, во-вто­рых, помощь исследователю в принятии некоторых решений о них. В предыдущих разделах этой главы их рассмотрение было связано с дескриптивной функцией статистики. Здесь же кратко описаны основные понятия и принципы статистического вывода.

Нормальное распределение. Наиболее широко известным теоре­тическим распределением является нормальное, или гауссовское, распределение. Нормальное распределение признака наблюдается в тех случаях, когда на величину его значений действует множество случайных независимых или слабозависимых факторов, каждый из которых играет в общей сумме примерно одинаковую и малую роль (т. е. отсутствуют доминирующие факторы). Функция плотности гауссовского распределения имеет вид

где s2 — дисперсия случайной величины (s2 — это теоретическая дисперсия, отличающаяся от s2, вычисляемой по выборочным дан­ным); m — среднее значение (математическое ожидание) (рис. 7).

В практических расчетах часто используется так называемое правило трех сигм, которое заключается в том, что лишь 0,26% всех значений нормально распределенного признака лежат вне ин­тервала m± Зs, т. е. почти все значения признака укладываются в интервале из шести сигм (рис. 8).







Date: 2015-09-19; view: 285; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию