Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Переменные звезды и их эволюция. Конечные стадии эволюции звезд и Солнца





Эволюционный путь звезды определяется ее массой, так как масса определяет количество горючего и с ее ростом увеличиваются температура в центре звезды и интенсивность термоядерных реакций. У звезд относительно небольшой массы (до 30 ) светимость L пропорциональна , где =3 — 5. Время жизни звезды пропорционально , т.е. , и для = 4, например,

получаем пропорциональное М -3. Значит, если для Солнца порядка лет, то у звезды массой лет. Для очень

массивных звезд светимость не столь высока, и она пропорциональна массе, т. е. время жизни почти не зависит от массы и равно 3 — 5 млн лет.

Если звезда имеет массу, близкую массе Солнца, то возможен переход звезды в кратковременную — на несколько миллионов лет — стадию пульсаций (стадия цефеиды), после чего звезда станет белым карликом. Возможно, что Солнце через миллиарды лет тоже начнет расширяться, достигнет стадии красного гиганта, и, если к тому времени человечество не покинет Солнечную систему (или не уничтожит себя раньше этого срока), его судьба будет предрешена. Красные гиганты типа Бетельгейзе и Антареса развились из звезд Главной последовательности и были массивнее Солнца. Возможно, большие звезды станут инфракрасными гигантами.

Оценим размер Солнца в стадии красного гиганта. По закону Стефана—Больцмана светимость L пропорциональна квадрату радиуса и . Значит, радиус R пропорционален . Подставляя численные значения, получаем радиус Солнца в эпоху красного гиганта: а. е. Полученное значение показывает, что Солнце расширится до орбиты Меркурия (среднее расстояние 0,387 а.е., расстояние в перигелии — 0,31 а. е.) и поглотит только планету Меркурий.


Переменные звезды— это звезды, блеск которых меняется (беспорядочно или периодически). Они отличаются от звезд типа нашего Солнца, «жизнь» которых относительно стационарна. Затменно-переменными являются двойные звезды.

Отмеченное более тысячи лет назад арабскими астрономами изменение блеска звезды р Персея отражено в ее названии — Эль-Гуль, или «дьявол», что в Европе превратилось в Алголь. Причину колебаний ее блеска разгадал английский астроном-любитель Дж. Гудрайк, предположив «существование большого тела, вращающегося вокруг Алголя». Он же обнаружил (1784) пульсации звезды дельта Цефея с периодом меньше 0,2 суток. Еще раньше Д. Фабрициус заметил новую яркую звезду в созвездии Кита, блеск которой менялся с периодом в 348 дней, и назвал ее Мирой («Чудесная»). Такие долгопериодические переменные звезды — преимущественно звезды-гиганты «холодного» спектрального класса М. Впоследствии были обнаружены и классифицированы более 14 тыс. переменных звезд.

Физически переменные звезды на диаграмме «спектр — светимость» занимают широкую полосу в направлении от Главной последовательности в область гигантов и сверхгигантов. При переходе слева направо период пульсаций звезды обратно пропорционален корню квадратному из средней плотности звезды. А ведь чем дальше вправо к области сверхгигантов смещена звезда, тем больше ее радиус и меньше ее плотность! Итак, период пульсаций связан со всей структурой звезды. Вероятно, источником пульсаций в этих звездах служит энергия, высвобождающаяся в звездных недрах, которая способна преобразоваться в механическую за счет особенностей ее строения.

Цефеиды — важный тип физически переменных звезд (см. гл. 3), с периодом блеска от нескольких часов до суток. Изучение спектров цефеид показывает, что вблизи максимального блеска звезда приближается к нам с наибольшей скоростью, а вблизи минимума — удаляется (эффект Доплера). Значит, цефеиды периодически сжимаются и расширяются (см. рис. 3.7).

Радиус цефеиды почти в 30 раз больше солнечного, и зона двукратной ионизации гелия, составляющая всего 1—2 % радиуса, при средней температуре 40 000 К и плотности 3 10-8 г/см3 составляет 10-6 всей массы. Но именно эта, казалось бы, незначительная зона приводит к пульсациям, работая как поршневой двигатель: освобождение энергии при сжигании горючего (или приобретение энергии системой) происходит в момент максимального сжатия в цилиндре. В зоне ионизации гелия-И за счет поглощения энергии растет давление, газ расширяется и уменьшается плотность. Слой становится прозрачней, запасенная в нем энергия начинает усиленно высвечиваться. При достижении наибольшего расширения внешние слои под действием тяготения начнут падать вниз, но равновесное положение «проскользнут», произойдет сжатие, и цикл повторится. Более детальный анализ показал, что пульсировать способ-


ны только звезды, в которых зона ионизации попадает в резонанс со всей звездой. Это возможно только для гигантов и сверхгигантов, а при движении вправо от них отстройка от резонанса приводит к неправильностям в блеске звезды. Возможно, многие звезды проходят подобные стадии эволюции.

Новые звезды в нашей Галактике дают до сотни вспышек за год, но видеть удается только одну-две из них. Термин «новые» ввел Тихо Браге, наблюдавший вспышку в 1572 г., и, хотя это название не из удачных, так как вспышка свидетельствует не о рождении, а о гибели звезды, оно сохранилось. Недавно установили, что новые — это тесные двойные системы, состоящие из звезды позднего класса и горячей звезды, окруженной оболочкой плотного газа. Вспыхивает звезда с меньшей массой, перетягивание части массы к ней разогревает ее и приводит к взрыву. Зарегистрировано около 170 новых звезд в нашей Галактике и около 200 — в галактике Андромеды.

В максимуме Новая звезда достигает абсолютной звездной величины М = -8. Такая яркость длится всего несколько дней. Может случиться, что она за несколько месяцев вернет свои прежние характеристики, и в звездных просторах это не выглядит катастрофой, но через сто или тысячу лет она может вновь взорваться (как вулкан имеет склонность к повторным извержениям). В 1885 г. взорвалась Новая S Андромеды: будучи слабой звездочкой 7-й величины, она вдруг стала светить ярче звезды 6-й величины. С учетом расстояния до нее она стала ярче всей галактики Андромеды, ее блеск достигал блеска миллиона простых новых звезд, или в 10 млрд раз превышал блеск Солнца. Это была вспышка Сверхновой звезды.

Сверхновыми звездами стали называть уже по аналогии звезды, производящие наиболее мощные взрывы. Вспышку Сверхновой наблюдали китайские астрономы еще в 1054 г. в созвездии Тельца, и сейчас остатки оболочки этой звезды наблюдаются в виде Крабовидной туманности. Со временем она рассеется в пространстве, но при вспышках образуются изотопы многих элементов с массовыми числами, большими 60. Именно эти вспышки обогащают газопылевые комплексы тяжелыми элементами, поэтому в молодых звездах наблюдается более высокое содержание тяжелых элементов, чем в старых. Вспышки Сверхновых наблюдали примерно раз в 150 — 300 лет в каждой галактике. Кроме расширяющейся оболочки газа, которая сбрасывается при вспышке, на месте вспышки остается нейтронная звезда, или пульсар. Грандиозная Сверхновая была зарегистрирована при обычном фотографировании звездного неба Р. Макнаутом (Австралия) 23 февраля 1987 г., а через 20 ч — И.Шелтоном (Чили), причем она произошла на расстоянии всего 16 тыс. св. лет в Большом Магеллановом облаке. Вспышка была потом детально исследована во


всех диапазонах длин волн, и от нее исходил мощный поток нейтрино. Эти исследования приоткрыли картину эволюции звезд, выделили проявление и роль в ней смены ядерного горючего, показали, что эта Сверхновая относилась к старым звездам.

Ранее это была звезда (красный гигант) с массой в 18 раз больше солнечной, она светила в 40 тыс. раз ярче Солнца и за 10 млн лет выработала энергию превращения водорода в гелий. Когда во внутренней области, где сосредоточено 30 % массы звезды, закончились термоядерные реакции, центральные слои стали сжиматься. Сжатие продолжалось десятки тысяч лет (от 6 до 1100 г/см3), при этом температура поднялась от 40 до 190 млн К. Эти изменения привели к «загоранию» следующего ядерного горючего — гелия, которого хватило еще на 1 млн лет. Внешние слои, содержащие водород, расширили звезду до 300 млн км, и она превратилась в красный гигант. После выгорания гелия настала очередь ядерного горения углерода на 12 тыс. лет при температуре ядра 740 млн К и плотности 240 г/см3' В результате сгорания углерода образовались магний, неон и натрий. Неон выгорел после углерода за 12 лет при температуре 1,5 млрд К и плотности 7,4 млн г/см3. После неона начинает гореть кислород, который сгорает за 4 года (Г= 2,1 млрд К и плотность в ядре 16 млн г/см3). После выгорания кислорода наступает очередь образовавшихся кремния и серы. Горение кремния формирует температуру в 3,4 млрд К и плотность 50 млн г/см3. Процесс выгорания кремния происходит уже за 7 суток. Ядро не уменьшило своей энергии из-за высокой температуры, но стало железным. Оно не обладает запасом ядерной энергии и не может противостоять тяготению, поэтому начинает стремительно сжиматься. За доли секунды ядро массой в 1,5 солнечных и радиусом в половину земного сжимается до радиуса около 100 км, т. е. становится почти нейтронным. Если бы оно сжалось до 10 км, то получилась бы нейтронная звезда. Но шло развитие рождения Сверхновой. Когда плотность достигла 270 млрд г/см3, нейтроны стали давить друг на друга, и процесс прекратился. Внешняя часть ядра, продолжающая падать с огромной скоростью, столкнулась с жестким ядром. В результате возникла ударная волна, которая устремилась к внешней поверхности звезды, но поток нейтрино обогнал ее, сорвал внешние оболочки и развеял их в пространстве. Через 160 тыс. лет этот поток нейтрино достиг Земли и был зафиксирован в подземных нейтринных лабораториях Японии, СССР и США.

Пульсарами назвали источники пульсирующего излучения, характер которого был не похож на известный ранее (типа цефеид). Радиоастрономы А. Хьюиш, С.Белл, И.Пилкингтон, П.Скотт и Р. Коллинз обнаружили на X = 3,68 м необычные радиосигналы, длящиеся 0,3 с (1968). Сигналы с точностью до 10-8 с повторялись через 1,337 с в течение полугода, но амплитуда сигнала менялась. Такой характер сигнала напоминал передачи земных радиостанций, в которых на строго ритмичные высокочастотные сигналы накладываются колебания звуковой частоты.

К настоящему времени открыто уже более двухсот пульсаров. Регистрируя излучение пульсаров на различных, но близких час-


тотах, удалось по запаздыванию сигнала на большей длине волны (при предположении о некоторой плотности плазмы в межзвездной среде) определить расстояние до них. Оказалось, что все пульсары находятся на расстояниях 100 — 25000 св. лет, т.е. принадлежат нашей Галактике, группируясь вблизи ее плоскости. Возможно, что большинство открытых пульсаров находится в том же спи-ральном рукаве, что и Солнце. Пульсар NP 0531 в центре Крабо-видной туманности отождествляли со звездой, которую считают остатком от вспышки Сверхновой в 1054 г. С развитием рентгеновской астрономии было замечено, что основную долю энергии пульсары излучают в этом диапазоне, и рост периода излучения пульсаров со временем позволяет оценить их возраст. Пульсирующий характер излучения объясняют быстрым вращением звезды и наличием сильного магнитного поля с индукцией до 100 млн Тл. Если магнитная ось не совпадает с осью вращения, то образуется «магнитный конус», попав в который заряженная частица может ускориться до скоростей, близких к световым, излучая энергию в направлении своего движения. Возникает узконаправленный пучок нетеплового излучения, и этот радиоимпульс регистрируется на Земле. Для пульсаров с периодом 0,5 — 2 с возраст составляет от 106 до 30 106 лет, т.е. это сравнительно молодые объекты Галактики. Но явление пульсара не связано с пульсациями самой нейтронной звезды. При плотности нейтронной звезды 1015 г/см3 период пульсаций равен всего 0,001 с, что в сотни раз меньше наблюдаемых периодов у пульсаров. Поэтому была разработана модель вращающейся нейтронной звезды, у которой ось вращения не совпадает с магнитной.

В 1985 г. появилась гипотеза, что источник рентгеновского излучения Лебедь Х-3 представляет собой кварковую звезду. В 1989 г. в центре взорвавшейся СН 1987 А обнаружили пульсар с частотой вращения до 2000 об/с, самый быстрый из известных, и также предположили, что он является кварковой звездой. Считается, что после такой вспышки остаток звезды должен превратиться в белого карлика и туманность.

Массы звезд определяют их конечные судьбы. Гипотезу о том, что возможно существование звезд огромной плотности, состоящих только из нейтронов, высказал Ландау еще в 1932 г. сразу же после открытия нейтрона. Через два года эту идею развили В. Ба-аде и Ф. Цвикки. Они показали, что такие звезды могут образовываться при взрывах Сверхновых — конечная стадия эволюции массивных звезд. Если в ядре звезды образовались атомы железа, оно будет далее сжиматься и разогреваться под действием сил гравитации. Железо начнет распадаться на протоны и нейтроны, затем протоны, взаимодействуя с электронами, превратятся в нейтроны. Получится компактная нейтронная звезда. Снаружи нейтронное ядро будет обрамлять железная кора температурой до 106 К.


Размеры звезды примерно 12-15км при средней плотности 1018 кг/м3. При такой огромной плотности нейтронная жидкость является вырожденной и подчиняется принципу запрета Паули, препятствующему дальнейшему сжатию. В центре нейтронной жидкости возможна примесь кваркового вещества.

Если давление вырожденных нейтронов при вспышке Сверхновой не сможет предотвратить дальнейшее сжатие ядра, начнется гравитационный коллапс. Когда скорость убегания (или вторая космическая) станет равной скорости света, коллапс неотвратим. Этот размер сжатия получил название гравитационного радиуса, определяемого массой звезды. Для Земли он составляет около 1 см, а для Солнца — 3 км. Если он достигнут, звезда станет черной дырой. Теория черных дыр, предсказанных ОТО, разработана достаточно подробно. Чтобы покинуть черную дыру, надо развить вторую космическую скорость, превышающую скорость света, что невозможно. Поэтому ни один объект не сможет покинуть ее поле. Вблизи черных дыр резко меняются свойства пространства-времени. Считают, что таков конец эволюции самых массивных звезд. Черная дыра может проявить себя, если она входит в состав двойной звездной системы, в которой вторая звезда — яркий гигант. Предполагают, что массивные черные дыры возникают в центрах компактных звездных скоплений, центрах галактик и квазаров. Возможно, маленькие черные дыры возникали и в самом начале расширения Вселенной. Тогда их можно было бы искать по рождению вблизи них элементарных частиц, как следует из теории. Сейчас «подозреваемыми» объектами на черные дыры являются Лебедь Х-1, Скорпион Х-1, Стрелец А и др.

Итак, звезды эволюционируют, и эволюция их необратима. Грандиозные неравновесные процессы происходят в пульсирующих звездах — цефеидах, в недрах звезд — мощные термоядерные процессы, обеспечивающие выделение огромного количества энергии. В конечные этапы жизни в звездах возникают некие упорядоченные состояния, которые не могут быть описаны классической физикой. В нейтронных звездах и белых карликах вещество переходит в новые квантовые состояния, которые ограничивают энергетические потери.

Date: 2015-09-19; view: 547; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию