Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
БЖД 14.Защитное зануление и заземление Устройство, принцип работы
14 Рабочее заземление применяется для ограничения величины потенциала токоведущих частей установки относительно земли и для обеспечения правильного действия защиты в электросистеме. В сетях напряжением до 1000 В, питаемых через трансформаторы от сетей напряжением более 1000 В, нейтраль или одна из фаз обмотки НН должна быть присоединена к заземлителю наглухо. При пробое между обмотками высшего и низшего напряжения заземление нейтрали или фазы ограничивает потенциал относительно земли сети низшего напряжения. В этих установках заземление нейтрали или фазы частично выполняет защитные функции. Защитное заземление. В условиях промышленных предприятий напряжение прикосновения может возникнуть не только между корпусом поврежденного электроприемника и землей, но и между корпусами электроприемников, между корпусом электроприемника и металлическими конструкциями здания, между станиной станка и металлическими трубопроводами и т.п. Сеть заземления в цехе промышленного предприятия должна электрически связывать между собой металлические части электрооборудования, которые могут оказаться под напряжением при пробое изоляции, и присоединить их к металлическим частям технологического оборудования и здания с целью уравнять потенциалы тех и других, если при порче изоляции какого-либо электроприемника такие разности потенциалов появятся. Поскольку в цех всегда может быть заведен также и нулевой потенциал земли, металлические части электрооборудования, могущие при пробое изоляции оказаться под напряжением, металлические части технологического оборудования и здания должны быть также заземлены, т.е. присоединены к заземлителю. Защитное заземление не требуется в установках при номинальных напряжениях 42 В переменного тока и 110 В постоянного тока и менее. К частям, подлежащим заземлению в тех случаях, когда оно требуется, относятся: корпуса электрических машин, трансформаторов, аппаратов, светильников и т.п.; приводы электрических аппаратов; вторичные обмотки измерительных трансформаторов; каркасы распределительных щитов, щитов управления, щитков и шкафов; металлические конструкции распределительных устройств; металлические кабельные конструкции; металлические корпуса кабельных муфт; оболочки и броня контрольных и силовых кабелей; металлические оболочки проводов, а также металлические трубы электропроводки, лотки, короба, тросы и металлические полосы, на которых укреплены кабели и провода (кроме тросов и полос, по которым проложены кабели с заземленными или занулеными оболочками); другие металлические конструкции, связанные с установкой электрооборудования, и металлические корпуса передвижных и переносных электроприемников.
Металлические оболочки и броня кабелей должны быть заземлены или занулены в начале и конце трассы. Должны быть заземлены или занулены также и металлические оболочки и броня кабелей и проводов напряжением 42 В переменного и 110 В постоянного тока и менее, если они проложены на общих металлических конструкциях, в том числе в трубах, коробах, лотках и т.п., вместе с кабелями и проводами, металлические оболочки и броня которых подлежат заземлению или занулению. Оборудование, установленное на заземленных металлических конструкциях, в том числе съемные или открывающиеся части на металлических заземленных каркасах и камерах распределительных устройств, ограждений, шкафов (например, двери и т.п.), может не заземляться (зануляться) отдельным проводником, если на опорных поверхностях предусмотрены незакрашенные и зачищенные места, достаточные для обеспечения электрического контакта. Допускается при заземлении отдельных электродвигателей, аппаратов и т.п. на станках непосредственно не заземлять металлические станины станков при условии обеспечения надежного контакта между корпусами электрооборудования и станиной. Заземлению не подлежат: арматура подвесных и штыри опорных изоляторов, кронштейны и осветительная арматура при установке их на деревянных опорах линий электропередачи и на деревянных конструкциях открытых подстанций, если это не требуется по условиям защиты от атмосферных перенапряжений;корпуса электроизмерительных приборов, реле и т.п., установленных на щитах, щитках, шкафах, а также на стенах камер распределительных устройств; электроприемники с двойной изоляцией; рельсовые пути, выходящие за территорию электростанций, подстанций, распределительных устройств и промпредприятий.
Для защиты электроустановок различных назначений и различных напряжений, территориально приближенных друг к другу, рекомендуется применять одно общее заземляющее устройство. Согласно ПУЭ сопротивление заземляющего устройства, к которому присоединены нейтрали генераторов или трансформаторов или выводы источника постоянного тока, в любое время года должны быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. Принцип действия защитного заземления Корпус электродвигателя или трансформатора, арматура электрического светильника или трубы электропроводки нормально не находятся под напряжением относительно земли благодаря изоляции от токоведущих частей. Однако в случае повреждения изоляции любая из этих металлических частей может оказаться под напряжением, нередко равным фазному. Электродвигатель с пробитой на корпус изоляцией часто электрически соединен с машиной, которую он приводит в движение, — например, установлен на станке. Таким образом, рабочий, взявшись за рукоятки управления станком, может нечаянно попасть под напряжение. Чтобы уменьшить опасность поражения людей при повреждениях изоляции токоведущих частей, применяют ряд мер, среди которых наиболее распространено защитное заземление металлических частей электроустановок, обычно не находящихся под напряжением, и их зануление. Защитное заземление состоит в том, что заземляемые металлические части соединяют электрическим проводником с заземлителем, то есть с металлическим предметом, находящимся в непосредственном соприкосновении с землей или с группой таких предметов. Чаще всего — это стержни из угловой стали, забитые в землю вертикально и соединенные между собой под землей приваренной к ним стальной полосой. Благодаря защитному заземлению напряжение, под которое может попасть человек, прикоснувшись к заземленной части, значительно снижается. Однако неверно распространенное мнение, что это напряжение равно нулю, так как все, что электрически связано с землей, должно иметь потенциал земли, то есть нуль. Дело в том, что землю можно рассматривать как электрический проводник с некоторым сопротивлением электрическому току, с падением напряжения вдоль пути тока, то есть с различным потенциалом точек земли около заземлителя и на большом расстоянии от него, где потенциал действительно можно считать нулевым. Если представить себе заземлитель полусферы (рис. 1), то ток в земле растекается во все стороны от этого заземлителя в радиальных направлениях. Сечение «земляного проводника» определяется поверхностью полусфер того или иного радиуса и по мере увеличения радиуса возрастает. Соответственно уменьшается сопротивление грунта растеканию тока. Как показывают опыты, падение напряжения на участке однородного грунта радиусом в 1 м от поверхности заземлителя составляет около 68% от всего напряжения на заземлителе, то есть от напряжения между заземлителем и точками нулевого потенциала, которые располагаются на расстоянии около 20 м от такого заземлителя. Приблизительно так же, как на рис. 1, выглядит эта кривая при другой конструкции сосредоточенного заземлителя. На расстоянии более 20 м от одиночного сосредоточенного заземлителя падение напряжения в слоях земли от тока, растекающегося с заземлителя, уже практически не обнаруживается. Пространство вокруг заземлителя, где обнаруживается ток растекания, называется полем или зоной растекания. Сопротивление заземлителя относительно земли (то есть относительно точек грунта с нулевым потенциалом) включает в себя, кроме сопротивления растеканию тока в земле, также сопротивление току при прохождении по самим заземлителям и переходное сопротивление в электрическом контакте между металлическим заземлителем и ближайшими к нему слоями грунта.
Рис. 1. Растекание тока в земле от сосредоточенного заземлителя и кривая изменения потенциала на поверхности земли по мере удаления от заземлителя
Последние две составляющие очень малы по сравнению с первой, даже если заземлители стальные и покрыты слоем ржавчины (но не краски). Поэтому под сопротивлением заземлителя относительно земли часто понимают его сопротивление растеканию, однако, точнее, сопротивление заземлителя — это отношение напряжения на нем (его потенциал) к току, который через него протекает при повреждении изоляции одной из фаз:
Напряжение на заземленном корпусе электрооборудования UK отличается от напряжения заземлителя U3 на величину падения напряжения в заземляющих проводниках, соединяющих корпус с заземлителем. Но можно считать U3 * UK. Хотя за пределами поля растекания ток в земле практически не обнаруживается, не следует считать, что в этом месте его нет. Для наличия электрического тока необходим замкнутый контур. Ток с провода, где повреждена изоляция, протекает через заземлитель и землю на провода других фаз в сети с незаземленной нейтралью через активное сопротивление их изоляции и через емкостные сопротивления этих проводов относительно земли. В сети с заземленной нейтралью ток от места замыкания течет главным образом к этой нейтрали, но не только по пути с наименьшим индуктивным сопротивлением (непосредственно под проводами линии), а и по другим путям, немного напоминающие силовые линии поля. На силу тока, протекающего через защитное заземление, влияет сопротивление всех элементов цепи этого тока, в том числе сопротивление заземлителя нейтрали. Если человек, находясь на земле в потенциальном поле заземлителя, прикоснется к заземленному корпусу оборудования с поврежденной изоляцией, он окажется под действием разности потенциалов между корпусом и точкой поверхности земли, на которой он стоит (рис. 1). Эту разность называют напряжением прикосновения Unp. Оно в общем случае составляет лишь часть напряжения заземлителя или равного ему напряжения на корпусе UK относительно точек земли с нулевым потенциалом:
где I3 — ток, стекающий с заземлителя; R3 — сопротивление заземлителя; а — коэффициент прикосновения (меньше единицы) который показывает, какую часть от напряжения на корпусе составляет напряжение прикосновения. Величины а и Unp зависят от расстояния между ногами человека и заземлителем (чем дальше, тем больше) и от крутизны кривой спада потенциала, которая может быть более пологой при сложной конструкции заземлителя (чем положе, тем лучше условия безопасности). К телу человека приложена лишь часть напряжения прикосновения, потому что последовательно с сопротивлением тела включено электрическое сопротивление обуви, пола и сопротивление растеканию тока в земле от ног человека. Часто под напряжением прикосновения понимают именно падение напряжения в теле человека между точками с разным потенциалом, которых он одновременно касается рукой и ногами или двумя руками. Между ступнями человека, идущего в потенциальном поле заземлителя, действует разность потенциалов, называемая шаговым напряжением Uш. Как видно из рисунка, оно тем больше, чем ближе человек к заземлителю и чем шире шаг. При расчетах принимают, что шаг человека равен 0,8 м. Для крупных животных расстояние между передними и задними ногами больше, отчего напряжение шага, действующее на них, выше; оно опаснее, чем для людей, еще и потому, что вызванный им ток проходит у животных через грудную клетку. Поэтому, например, корова может погибнуть при значительно меньшем напряжении на заземлителе, к которому она приближается (или на большем расстоянии от упавшего на землю провода), хотя для крупных животных значение смертельных токов намного больше, чем для людей. Установлено, что при одиночном вертикальном стержневом заземлителе ток через него в 3,5 А уже может создать смертельное для животных шаговое напряжение. На рисунке 2 показана сеть без заземленной точки с сопротивлением изоляции проводов относительно земли Г; и г2. После пробоя изоляции одного из проводов на металлический корпус, который связан с защитным заземлением, обладающим сопротивлением растеканию тока в земле г3, этот корпус будет иметь относительно участков земли с нулевым потенциалом напряжение, равное падению напряжения на корень из 3 от тока через него. Так как сопротивление изоляции проводов относительно земли значительно больше сопротивления растеканию тока в земле, ток через заземлитель практически не зависит от сопротивления заземлителя. Поэтому с уменьшением сопротивления заземлителя пропорционально уменьшается напряжение прикосновения. Уменьшается и опасность от прикосновения. Однако такое же напряжение появится на корпусах и неповрежденного оборудования, присоединенных к тому же защитному заземлению. Это один из недостатков заземления как защитного мероприятия.
Рис. 2. Защитное заземление в однофазной сети без заземленной точки
Принцип действия защитного зануления В установках напряжением 380/220 В с заземленной нейтралью непосредственное защитное заземление корпусов оборудования нередко могло бы оказаться недостаточно эффективным, потому что заземлений в таких сетях понадобилось бы много и экономически невозможно было бы сооружать их все с очень маленьким сопротивлением заземлителей. При пробое изоляции сопротивление двух последовательно включенных сопротивлений (заземления нейтрали Ro и защитного заземления корпуса поврежденного токоприемника R3) могло быть таким, что ток однофазного замыкания на корпус был бы слишком мал, чтобы вызвать срабатывание плавкого предохранителя, защищающего поврежденный токоприемник. Например, при сопротивлении обоих заземлителей по 4 Ом, даже если пренебречь сопротивлением фазного провода от источника питания до места повреждения изоляции, ток (в расчете не учтены активное сопротивление земли между зонами растекания тока с заземлителей, равное 0,05 Ом/км, и внешнее индуктивное сопротивление току однофазного короткого замыкания в петле фаза — земля). Из расчета видно, что в этом случае предохранитель с номинальным током плавкой вставки 35 А и выше не сработает. На заземленном оборудовании длительно может оставаться напряжение, при равенстве сопротивлений заземлителей равное половине фазного, то есть 110 В. Если же защитное заземляющее устройство имеет большее сопротивление, чем заземляющее устройство нейтрали, то напряжение относительно земли на заземленном оборудовании будет во столько же раз превышать напряжение на нулевой точке. Например, если сопротивление заземления нейтрали 2 Ом, а сопротивление защитного заземления 8 Ом, на заземленных частях оборудования при пробое изоляции будет напряжение Поэтому в сетях напряжением 380/220 В, где нейтраль обмотки питающего трансформатора или генератора наглухо заземляется, вместо защитного заземления корпусов токоприемников путем непосредственной связи с расположенным поблизости заземлителем применяют особую разновидность заземления, которая по сути дела является самостоятельным защитным мероприятием и называется занулением. Это металлическое присоединение корпусов электрооборудования к нулевой точке (заземленной нейтрали) трансформатора или генератора. Обычно проводники, зануляющие отдельные токоприемники, связывают их не непосредственно с нулевой точкой, а с рабочим нулевым проводом. При пробое изоляции в зануленом оборудовании возникает цепь тока однофазного короткого замыкания со сравнительно небольшим сопротивлением, состоящим из сопротивлений фазного и нулевого проводов. Появляется ток короткого замыкания, значительно больший, чем ток однофазного замыкания на землю, где применяется просто защитное заземление. Поэтому быстро срабатывает плавкий предохранитель или автоматический выключатель, защищающий поврежденное оборудование или участок сети. Именно быстрое и полное снятие напряжения с поврежденного оборудования является основой защитного действия зануления — в отличие от защитного заземления, когда напряжение на заземленных частях при повреждении изоляции понижается, но может длительно сохраняться. В случае обрыва нулевого провода все оборудование за точкой обрыва оказалось бы не только совершенно лишенным защиты, но и поставленным даже в более плохие условия, чем при полном ее отсутствии, потому что при повреждении изоляции любого аппарата или электродвигателя, присоединенному к нулевому проводу за точкой обрыва, появилось бы напряжение, часто равное фазному, и на его корпусе, и на всех других зануленных корпусах. Чтобы избежать этого, во-первых, стремятся предотвратить обрывы нулевого провода. Во-вторых, чтобы уменьшить напряжение при замыкании на корпус электрооборудования, связанного с нулевым проводом, если он все же оборвется, необходимо делать повторные заземления нулевого провода. Повторные заземления нулевого провода полезны и при целом нулевом проводе, так как они снижают напряжение на корпусе поврежденного оборудования до момента срабатывания предохранителя или в случае, если он все же не сработает из-за неправильного выбора плавкой вставки или при недостаточно большой силе тока короткого замыкания, когда замыкание на корпус произошло через большое переходное сопротивление остатков изоляции. Если у нулевого провода сечение в 2 раза меньше, а сопротивление в 2 раза выше, чем у фазного, то без повторного заземления при замыкании на корпус в зануленном токоприемнике на нулевом проводе возникает падение напряжения приблизительно в 2/3 фазного напряжения, то есть 147 В. Оно и будет на корпусе относительно земли. Если же вблизи поврежденного оборудования находится одно повторное заземление, то параллельный нулевому проводу путь тока через землю снизит результирующее сопротивление цепи тока от корпуса до нулевой точки трансформатора. Понизится и падение напряжения UK, о на этом пути. Еще больше понизится напряжение Uк на корпусе токоприемника относительно земли, которое будет составлять лишь часть от UK.0: где: Ro — сопротивление заземления нейтрали; Rn — сопротивление повторного заземлителя. При Rq = Rnl UK = 0,5UK.o. При двух или большем количестве повторных заземлений на данной линии напряжение на корпусе снижается еще больше. В установках до 1000 В с заземленной нейтралью запрещается применять защитное заземление корпуса без металлической связи с нулевой точкой источника. Но если заземлители данного корпуса и нулевой точки металлически связаны между собой, можно не иметь специального зануляющего проводника. Запрещается применять землю в качестве рабочего нулевого провода в установках напряжением 380/220 В или 220/127 В (с заземленной нейтралью) и в качестве фазного провода в установках напряжением до 1000 В с незаземленной нейтралью. Если в жилой комнате или общественном помещении есть радиаторы центрального отопления или проходят металлические водогазопроводные трубы, опасно пользоваться вблизи них настольной лампой с металлическим незануленным корпусом или утюгом и другими переносными электроприборами без зануления, так как возможность одновременного соприкосновения с корпусами электрооборудования и заземленными трубопроводами создает повышенную опасность поражения электротоком. Допускается использовать переносные электроприемники без заземления (зануления) только в случае, если металлические трубопроводы недоступны для прикосновения, — например, если радиаторы ограждены деревянными решетками. В установках напряжением 36 В (42 В) и ниже переменного тока или 110 В и ниже постоянного тока заземление или зануление не применяют вообще ни в каких помещениях или наружных установках, кроме взрывоопасных; не применяют их и для электросварки, где независимо от напряжения полагается заземлять зажим вторичной обмотки трансформатора, к которому присоединяется обратный провод от свариваемой детали.
Date: 2015-09-19; view: 2482; Нарушение авторских прав |