Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Введение. Методы оптимизации, как научная дисциплина, по существу считается частью более общей дисциплины – «Исследование операций»
Методы оптимизации, как научная дисциплина, по существу считается частью более общей дисциплины – «Исследование операций». Начало ее развития связывают с сороковыми годами двадцатого столетия. Отправной, наиболее крупной и значимой работой в этой области считается монография Л.В.Канторовича «Математические методы организации и планирования производства», вышедшая в 1939 году (в 1975 году Л.В.Канторовичу за цикл работ в области оптимального использования ресурсов в экономике была присуждена Нобелевская премия). Но уже в 1930 году советский ученый А.Н.Толстой предложил модель транспортной задачи. В зарубежной научной практике одним из пионеров в области линейного программирования был Джон фон Нейман, знаменитый математик и физик, успешно работавший в области теории игр, тесно связанной с методами линейного программирования. В зарубежной научной литературе ключевой обычно считается работа Дж.Данцига, вышедшая в 1947 году и посвященная решению линейных экстремальных задач, в которой автор, опираясь на методы линейной алгебры, смог сформулировать и развить «симплексный метод». Оптимизировать – значит улучшить, получить наилучшее из имеющихся альтернативных решений. При этом задача, стоящая перед исследователем, должна быть строго формализована и представлена в виде математической модели. В методах оптимизации поиск оптимального решения называется программированием. Содержание процедур, которые описываются в рамках этого термина, отличается от процесса программирования в области информатики, когда результатом действия является детально расписанный алгоритм расчета. Пожалуй, общим между программированием в методах оптимизации и в информатике является поиск наиболее эффективной упорядоченности процедур, необходимых для получения конкретного результата. Термин «программирование» был предложен Вудом и Данцигом, при этом подчеркивалось, что основным здесь является планирование, составление программы действий. Задача оптимизации записывается следующим образом:
т.е. равнозначны два варианта задачи:
или Теория задач на оптимизацию наибольших или наименьших величин называется теорией экстремальной оптимизации, что подчеркивает общность процесса оптимизации с процедурой нахождения экстремума (в курсе математического анализа). Различия между целями нахождения минимума и максимума нет, так как любая функция, имеющая, например, максимум при каком-то значении аргумента х, будучи умноженной на -1, имеет минимум в той же точке. Типы моделей. Математическая модель – одно или система уравнений, отражающих количественную связь между входящими в модель параметрами. Целью составления модели является исследование взаимозависимости между ними, а также исследование управления процессами, которые описываются данными моделями. Уровень точности и результативности конкретной математической модели существенно зависят от ряда факторов, в том числе: - полноты учета независимых параметров; - точности исходных параметров; - видов и методов математического аппарата, привлекаемого для составления модели. По количеству независимых параметров модели подразделяют на следующие типы: - одномерная модель отражает положение точки на числовой оси, (например, х=а); - двумерная модель отражает положение точки на плоскости, (например, ах1 +bх2 =с); - трехмерная модель отражает положение точки на какой-то поверхности, (например, ах1 + bх2 + сх3 =d); - многомерная модель имеет количество независимых параметров более трех (например, ах1 + bх2 + сх3 + dх4 =е). Очевидно, что мы можем представить в виде геометрических образов только одно-, двух- или трехмерную модели. При количестве независимых параметров более трех говорят, что такая модель описывает гиперповерхность, которая является частью гиперпространства. Независимые параметры входят в структуру модели с различными степенями: - если все параметры имеют степень, равную единице, то такая модель называется линейной и геометрически отражает линию (двумерная модель) ах1 +bх2 =с, или плоскость ах1 + bх2 + сх3 =d; - если хотя бы один параметр имеет степень, не равную единице, то такая модель называется нелинейной и геометрически она может отражать, например, замкнутую трехмерную поверхность (например, шаровая поверхность)
или незамкнутую поверхность (например, параболоид вращения)
Линия или поверхность, описываемые соответствующей моделью, называется линией или поверхностью отклика данной модели. Процесс исследования модели достаточно многообразный и преследует различные цели. Поиск оптимума является одной из задач такого анализа и заключается в нахождении таких значений параметров, при которых на поверхности отклика наблюдается экстремум (максимум или минимум). В таком случае поиск экстремума может проводиться в условиях накладываемых на значения параметров ограничений либо при отсутствии таковых (т.е. зона поиска экстремума неограниченна на числовой оси). В свою очередь ограничения (как и собственно модели) могут быть линейными и нелинейными. В зависимости от вида математических моделей и ограничений, в них имеющихся, различают линейное и нелинейное программирование. В первом случае как математическая модель, так и ограничения - это всегда линейные функции. В противном случае, если модель или хотя бы одно из ограничений описывается нелинейной функцией - говорят, что имеется задача нелинейного программирования. Так как рассматриваемая область исследований, как правило, имеет в виду конкретные объекты, то в зависимости от типа параметров различают непрерывное и дискретное программирование. В первом случае природа рассматриваемых параметров допускает их дробность, во втором случае рассматриваются параметры только целочисленные (например, количество единиц оборудования и т.п.). Имея в своей основе общность методологических подходов, дискретное программирование требует специфических методов решения задачи.
Date: 2015-09-18; view: 341; Нарушение авторских прав |