Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Хромосомные мутации





На хромосомном уровне организации наследственный материал обладает всеми характеристиками субстрата наследственности и изменчивости, в том числе и способностью к приобретению изменений, которые могут передаваться новому поколению. Под влиянием различных воздействий физико-химическая и морфологическая структура хромосом может изменяться. В основе изменения структуры хромосом, как правило, лежит первоначальное нарушение ее целостности - разрывы, которые, сопровождаются различными перестройками, называемые хромосомные мутации или аберрации. Разрывы хромосом происходят закономерно в ходе кроссинговера, когда они сопровождаются обменом соответствующими участками между гомологичными хромосомами. Нарушение кроссинговера, при котором хромосомы обмениваются неравноценным генетическим материалом, приводит к появлению новых групп сцепления, где отдельные участки выпадают - делеция - или удваиваются - дупликация. При таких перестройках меняется число генов в группе сцепления. Разрывы хромосом могут возникать так же под действием различных внешних факторов, чаще физических (например, ионизирующее излучение), некоторых химических соединений, вирусов. Нарушение целостности хромосом может сопровождаться поворотом ее участка, находящегося между разрывами, на 180° - инверсия.

Фрагмент хромосомы, отделившийся от нее при разрыве, может прикрепиться к другой хромосоме - транслокация. Нередко две поврежденные негомологичные хромосомы взаимно обмениваются оторвавшимися участками - реципрокная транслокация. Возможно присоединение фрагмента к своей же хромосоме, но в другом месте - транспозиция. Особую категорию хромосомных мутаций представляют аберрации, связанные со слиянием или разделением хромосом, когда две негомологичные структуры объединяются в одну - робертсоновская транслокация, или одна хромосома образует две самостоятельные хромосомы. При таких мутациях не только изменяется морфология хромосом, но и изменяется их количество в кариотипе. Последнее можно рассматривать как геномную мутацию. Причиной геномных мутаций может быть также нарушение процессов, протекающих в мейозе. Нарушение расхождения бивалентов в анафазе приводит к появлению гамет с разным количеством хромосом. Оплодотворение таких гамет нормальными половыми клетками приводит к изменению общего числа хромосом в кариотипе за счет уменьшения (моносомия) или увеличения (трисомия) числа отдельных хромосом. Такие нарушения структуры генома, называют анэуплоидией. При повреждении механизма распределения гомологичных хромосом клетка остается неразделившейся, и тогда образуются диплоидные гаметы. Оплодотворение таких гамет приводит к образованию триплоидных зигот, то есть происходит увеличение числа наборов хромосом - полиплоидия. Любые мутационные изменения в наследственном материале гамет - генеративные мутации - становятся достоянием следующего поколения, если такие гаметы участвуют в оплодотворении.

Патологические эффекты хромосомных и геномных мутаций проявляются на всех стадиях онтогенеза, поскольку вызывают нарушения общего генетического баланса, скоординированности в работе генов и системности регуляции. Они проявляются в двух взаимосвязанных вариантах: летальности и врожденных пороках развития. Летальный исход хромосомных мутаций - один из главных факторов внутриутробной гибели, достаточно высокой у человека. Многочисленные цитогенетические исследования материала спонтанных абортов, выкидышей и мертворожденных позволяют объективно судить об эффектах разных типов хромосомных аномалий во внутриутробном периоде индивидуального развития. Суммарный вклад хромосомных мутаций во внутриутробную гибель у человека составляет 45 %. Среди перинатально погибших плодов частота хромосомных аномалий составляет 6 %. В этих случаях летальные эффекты сочетаются с пороками развития, а точнее, реализуются через пороки. Практически все хромосомные аномалии ведут к врожденным порокам развития. Более тяжелые их формы приводят к более раннему прерыванию беременности. Роль хромосомных и геномных мутаций не ограничивается только их влиянием на развитие патологических процессов в ранних периодах онтогенеза. Их эффекты прослеживаются в течение всей жизни. Хромосомные аномалии, возникающие в соматических клетках в постнатальном периоде, могут вызывать различные последствия: остаться нейтральными для клетки, обусловить гибель клетки, изменить функцию. Такие мутации возникают в соматических клетках постоянно с невысокой частотой (около 2 %). В норме такие клетки элиминируются иммунной системой, если они проявляют себя чужеродно. Однако в некоторых случаях (активация онкогенов при транслокациях, делениях) хромосомные аномалии являются причиной злокачественного роста. Облучение и химические мутагены, индуцирующие хромосомные аберрации, вызывают гибель клеток и тем способствуют развитию лучевой болезни, аплазии костного мозга. Имеются экспериментальные доказательства накопления клеток с хромосомными аберрациями в процессе старения.


45.Геномные мутации…..

Геномные: — полиплоидизация (образование организмов или клеток, геном которых представлен более чем двумя (3n, 4n, 6n и т. д.) наборами хромосомами) и анеуплоидия (гетероплоидия) - изменение числа хромосом, не кратное гаплоидному набору (см. Инге-Вечтомов, 1989). В зависимости от происхождения хромосомных наборов среди полиплоидов различают аллополиплоидов, у которых имеются наборы хромосом, полученные при гибридизации от разных видов, и аутополиплоидов, у которых происходит увеличение числа наборов хромосом собственного генома, кратное n.

Полиплоидией (греч. polýploos — многопутный, многократный и греч. éidos — вид) называют кратное увеличение количества хромосом в клетке эукариот. Полиплоидия гораздо чаще встречается среди растений, нежели среди животных. Среди раздельнополых животных описана у нематод, в частности аскарид, а также у ряда представителей земноводных. Искусственно полиплоидия вызывается ядами, разрушающими веретено деления, такими как колхицин.

Различают автополиплоидию и аллополиплоидию.

1. Автополиплоидия — наследственное изменение, кратное увеличение числа наборов хромосом в клетках организма одного и того же биологического вида. На основе искусственной автополиплоидии синтезированы новые формы и сорта ржи, гречихи, сахарной свёклы и других растений.

1. Аллополиплоидия — кратное увеличение количества хромосом у гибридных организмов. Возникает при межвидовой и межродовой гибридизации.

У человека, как и у подавляющего большинства многоклеточных животных, большая часть клеток диплоидны. Гаплоидны только зрелые половые клетки, или гаметы. Нарушения плоидности (как анеуплоидия, так и более редкая полиплоидия) приводят к серьёзным болезненным изменениям. Примеры анеуплоидии у человека: синдром Дауна — трисомия по 21-й хромосоме (21-я хромосома представлена тремя копиями), синдром Кляйнфельтера — избыточная X хромосома (XXY), синдром Тернера — нулисомия по одной из половых хромосом (X0). Описаны также трисомия по X хромосоме и случаи трисомии по некоторым другим аутосомам (помимо 21-й). Примеры полиплоидии редки, однако известны как абортивные триплоидные зародыши, так и триплоидные новорождённые (срок их жизни при этом не превышает нескольких дней) и диплоидно-триплоидные мозаики.

Анеуплоиди́я (греч. an + eu + ploos + eidos — отрицательная приставка + вполне + кратный + вид) — наследственное изменение, при котором число хромосом в клетках не кратно основному набору. Может выражаться, например, в наличии добавочной хромосомы (n + 1, 2n + 1 и т. п.) или в нехватке какой-либо хромосомы (n — 1, 2n — 1 и т. п.). Анеуплоидия может возникнуть, если в анафазе I мейоза гомологичные хромосомы одной или нескольких пар не разойдутся. В этом случае оба члена пары направляются к одному и тому же полюсу клетки, и тогда мейоз приводит к образованию гамет, содержащих на одну или несколько хромосом больше или меньше, чем в норме. Это явление известно под названием нерасхождение. Когда гамета с недостающей или лишней хромосомой сливается с нормальной гаплоидной гаметой, образуется зигота с нечетным числом хромосом: вместо каких-либо двух гомологов в такой зиготе их может быть три или только один.


Зигота, в которой количество аутосом меньше нормального диплоидного, обычно не развивается, но зиготы с лишними хромосомами иногда способны к развитию. Однако из таких зигот в большинстве случаев развиваются особи с резко выраженными аномалиями.

Формы анеуплоидии

Моносомия

Моносомия — это наличие всего одной из пары гомологичных хромосом. Примером моносомии у человека является синдром Тернера, выражающийся в наличии всего одной половой (X) хромосомы. Генотип такого человека X0, пол — женский. У таких женщин отсутствуют обычные вторичные половые признаки, характерен низкий рост и сближенные соски. Встречаемость среди населения Западной Европы составляет 0,03 %. Подробнее читайте в статье синдром Шерешевского-Тернера.

В случае обширной делеции в какой-либо хромосоме иногда говорят о частичной моносомии, например синдром кошачьего крика.

Трисомия

Трисомия — это наличие трёх гомологичных хромосом вместо пары в норме.

Наиболее часто встречающейся у человека является трисомия по 16-й хромосоме (более одного процента случаев беременности). Однако следствием этой трисомии является спонтанный выкидыш в первом триместре.

Схематическое изображение кариотипа мужчины, страдающего синдромом Дауна. Нерасхождение хромосом G21 в одной из гамет привело к трисомии по этой хромосоме.

Среди новорождённых наиболее распространена трисомия по 21-й хромосоме, или синдром Дауна (2 n + 1 = 47). Эта аномалия, названая так по имени врача, впервые описавшего её в 1866 г., вызывается нерасхождением хромосом 21. К числу её симптомов относятся задержка умственного развития, пониженная сопротивляемость болезням, врождённые сердечные аномалии, короткое коренастое туловище и толстая шея, а также характерные складки кожи над внутренними углами глаз, что создаёт сходство с представителями монголоидной расы.

Другие случаи нерасхождения аутосом:

1. Трисомия 18 (синдром Эдвардса)

2. Трисомия 13 (синдром Патау)

3. Трисомия 16 выкидыш

4. Трисомия 9

5. Трисомия 8 (синдром Варкани)

Синдром Дауна и сходные хромосомальные аномалии чаще встречаются у детей, рождённых немолодыми женщинами. Точная причина этого неизвестна, но, по-видимому, она как-то связана с возрастом яйцеклеток матери.

Случаи нерасхождения половых хромосом:

1. XXX (женщины внешне нормальны, плодовиты, но отмечается умственная отсталость)

2. XXY, Синдром Клайнфельтера (мужчины, обладающие некоторыми вторичными женскими половыми признаками; бесплодны; яичники развиты слабо, волос на лице мало, иногда развиваются молочные железы; обычно низкий уровень умственного развития)

3. XYY (мужчины высокого роста с различным уровнем умственного развития;)

Тетрасомия и пентасомия

Тетрасомия (4 гомологичные хромосомы вместо пары в диплоидном наборе) и пентасомия (5 вместо 2-х) встречаются чрезвычайно редко. Примерами тетрасомии и пентасомии у человека могут служить кариотипы XXXX, XXYY, XXXY, XYYY, XXXXX, XXXXY, XXXYY, XYYYY и XXYYY.







Date: 2015-09-02; view: 1013; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.01 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию