Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Цитологические основы наследственности. Клеточный цикл. Митоз. Типы митоза. Отклонения от нормального митоза. Понятие о кариотипе и гентических картах





Клеточный цикл. Повторяющаяся совокупность событий, обеспечивающих деление эукариотических клеток, получила название клеточного цикла. Продолжительность клеточного цикла зависит от типа делящихся клеток. Некоторые клетки, например, нейроны человека, после достижения стадии терминальной дифференцировки прекращают свое деление вообще. Клетки легких, почек или печени во взрослом организме начинают делиться лишь в ответ на повреждение соответствующих органов. Клетки эпителия кишечника делятся на протяжении всей жизни человека. Даже у быстро пролиферирующих клеток подготовка к делению занимает около 24 ч. Клеточный цикл разделяют на стадии: Митоз - М-фаза, деление клеточного ядра. G1 -фаза период перед синтезом ДНК. S-фаза - период синтеза (репликации ДНК). G2-фаза - период между синтезом ДНК и митозом. Интерфаза - период, включающий в себя G1 -, S- и G2-фазы. Цитокинез - деление цитоплазмы. Точка рестрикции, R-point - время в клеточном цикле, когда продвижение клетки к делению становится необратимым. G0 фаза - состояние клеток, достигших монослоя или лишенных фактора роста в ранней G1 фазе.

Делению клетки (митозу или мейозу) предшествует удвоение хромосом, которое происходит впериоде S клеточного цикла (рис. 66.2). Период обозначают первой буквой слова synthesis - синтез ДНК. С момента окончания периода S до завершения метафазы ядро содержит в четыре раза больше ДНК, чем ядро сперматозоида или яйцеклетки, а каждая хромосома состоит из двух идентичных сестринских хроматид.

Во время митоза хромосомы конденсируются и в конце профазы или начале метафазы становятся различимыми при оптической микроскопии (рис. 66.1). Для цитогенетического анализа обычно используют препараты именно метафазных хромосом.

В начале анафазы центромеры гомологичных хромосом разъединяются, и хроматиды расходятся к противоположным полюсам митотического веретена. После того как к полюсам отойдут полные наборы хроматид (с этого момента их называют хромосомами), вокруг каждого из них образуется ядерная оболочка, формируя ядра двух дочерних клеток (разрушение ядерной оболочки материнской клетки произошло в конце профазы). Дочерние клетки вступают впериод G1, и только при подготовке к следующему делению они переходят в период S и в них происходит репликация ДНК.

Клетки со специализированными функциями, длительное время не вступающие в митоз или вообще утратившие способность к делению, находятся в состоянии, называемом периодом G0.

Большинство клеток в организме диплоидные - то есть имеют два гаплоидных набора хромосом(гаплоидный набор - это число хромосом в гаметах, у человека он составляет 23 хромосомы, адиплоидный набор хромосом - 46).

В гонадах предшественники половых клеток сначала претерпевают ряд митотических делений, а затем вступают в мейоз - процесс образования гамет, состоящий из двух последовательных делений. В мейозе гомологичные хромосомы спариваются (отцовская 1-я хромосома с материнской 1-й хромосомой и т. д.), после чего в ходе так называемого кроссинговерапроисходит рекомбинация, то есть обмен участками между отцовской и материнской хромосомами. В результате качественно изменяется генетический состав каждой из хромосом.

Отклонения от типичного протекания митоза. Помимо митоза имеются еще три типа деления ядра соматических клеток: эндомитоз, политения и амитоз.

Эндомитоз. При этом типе деления ядерная оболочка не распадается. Редупликация хромосом происходит как и при митозе. Таким образом, увеличивается многократно число хромосом в ядре и размеры самого ядра. Эндомитоз впервые был описан для клеток тапетума шпината (Spinacia sativa), а затем был обнаружен в антиподах семейств сложноцветных (Compositae) и лютиковых (Ranunculaceae).

Политения. Политению можно рассматривать как частный случай эндомитоза. При политении образуются гигантские хромосомы за счет многократной редупликации хроматид, но без разделения центромеры. При этом степень конденсации хроматид меньше, чем у митотических хромосом. Хроматиды плотно прилегают друг к другу, при этом хромомеры многочисленных хроматид образуют поперечные диски и пуффы (рис. 2.11, 2.12). Впервые политенные хромосомы были обнаружены в слюнных железах личинки комара, а затем и в ядрах эндосперма и антипод различных семейств растений.

Амитоз или прямое деление ядра. При амитозе ядро делится на две части перетяжкой. Затем происходит разделение цитоплазмы клетки и возникает клеточная перегородка.

Амитотическое деление приводит к неравномерному распределению ДНК в дочерних клетках. аМИТОЗ СВОЕСТВЕНЕН ДИФФЕРЕНЦИРОВАННЫМ ТКАНЯМ (КЛЕТКИ СТЕНОК ЗАВЯЗИ, КРАХМАЛЛООБРАЗУЮЩИЕ КЛЕТКИ КЛУБНЕЙ КАРТОФЕЛЯ, клеткам перисперма.


Кариоти́п — совокупность признаков (число, размеры, форма и т. д.) полного набора хромосом, присущая клеткам данного биологического вида (видовой кариотип), данного организма (индивидуальный кариотип) или линии (клона) клеток. Кариотипом иногда также называют и визуальное представление полного хромосомного набора (кариограммы).

Генетической картой хромосом называют схему относительного расположения генов, находящихся в данной группе сцепления. Они составлены пока лишь для некоторых наиболее изученных с генетической точки зрения объектов: дрозофилы, кукурузы, томатов, мыши, нейроспоры, кишечной палочки и др.

Генетические карты составляют для каждой пары гомологичных хромосом. Группы сцепления нумеруют.

Для того, чтобы составить карты, необходимо изучить закономерности наследования большого числа генов. У дрозофилы, например, изучено более 500 генов, локализованных в четырех группах сцепления, у кукурузы — более 400 генов, локализованных в десяти группах сцепления и т.д. При составлении генетических карт указывается группа сцепления, полное или сокращенное название генов, расстояние в процентах от одного из концов хромосомы, принятого за нулевую точку; иногда обозначается место центромеры.

 

Цитологические основы наследственности. Мейоз. Типы мейоза и его биологическое значение. Отклонения от типичного мейоза: диплоидные высшие организмы, авто- и аллоплоиды, низшие эукариоты.

Типичный мейоз состоит из двух последовательных клеточных делений, которые соответственно называются мейоз I имейоз II. В первом делении происходит уменьшение числа хромосом в два раза, поэтому первое мейотическое деление называютредукционным, реже – гетеротипным. Во втором делении число хромосом не изменяется; такое деление называют эквационным(уравнивающим), реже – гомеотипным. Выражения «мейоз» и «редукционное деление» часто используют как синонимы.

Интерфаза. Предмейотическая интерфаза отличается от обычной интерфазы тем, что процесс репликации ДНК не доходит до конца: примерно 0,2...0,4 % ДНК остается неудвоенной. Таким образом, деление клетки начинается на синтетической стадии клеточного цикла. Поэтому мейоз образно называют преждевременным митозом. Однако в целом, можно считать, что в диплоидной клетке (2n) содержание ДНК составляет 4с.

При наличии центриолей происходит их удвоение таким образом, что в клетке имеется две диплосомы, каждая из которых содержит пару центриолей.

Первое деление мейоза (редукционное деление, или мейоз I)

Сущность редукционного деления заключается в уменьшении числа хромосом в два раза: из исходной диплоидной клетки образуется две гаплоидные клетки с двухроматидными хромосомами (в состав каждой хромосомы входит 2 хроматиды).

Профаза 1 (профаза первого деления) состоит из ряда стадий:

Лептотена (стадия тонких нитей). Хромосомы видны в световой микроскоп в виде клубка тонких нитей. Раннюю лептотену, когда нити хромосом видны еще очень плохо, называют пролептотена.

Зиготена (стадия сливающихся нитей). Происходит конъюгация гомологичных хромосом (от лат. conjugatio – соединение, спаривание, временное слияние). Гомологичные хромосомы (или гомологи) – это хромосомы, сходные между собой в морфологическом и генетическом отношении. У нормальных диплоидных организмов гомологичные хромосомы – парные: одну хромосому из пары диплоидный организм получает от матери, а другую – от отца. При конъюгации образуются биваленты. Каждый бивалент – это относительно устойчивый комплекс из одной пары гомологичных хромосом. Гомологи удерживаются друг около друга с помощью белковых синаптонемальных комплексов. Один синаптонемальный комплекс может связывать только две хроматиды в одной точке. Количество бивалентов равно гаплоидному числу хромосом. Иначе биваленты называютсятетрады, так как в состав каждого бивалента входит 4 хроматиды.


Пахитена (стадия толстых нитей). Хромосомы спирализуются, хорошо видна их продольная неоднородность. Завершается репликация ДНК (образуется особая пахитенная ДНК). Завершается кроссинговер – перекрест хромосом, в результате которого они обмениваются участками хроматид.

Диплотена (стадия двойных нитей). Гомологичные хромосомы в бивалентах отталкиваются друг от друга. Они соединены в отдельных точках, которые называются хиазмы (от древнегреч. буквы χ – «хи»).

Диакинез (стадия расхождения бивалентов). Отдельные биваленты располагаются на периферии ядра.

Метафаза I (метафаза первого деления)

В прометафазе I ядерная оболочка разрушается (фрагментируется). Формируется веретено деления. Далее происходитметакинез – биваленты перемещаются в экваториальную плоскость клетки.

Анафаза I (анафаза первого деления)

Гомологичные хромосомы, входящие в состав каждого бивалента, разъединяются, и каждая хромосома движется в сторону ближайшего полюса клетки. Разъединения хромосом на хроматиды не происходит. Процесс распределения хромосом по дочерним клеткам называется сегрегация хромосом.

Телофаза I (телофаза первого деления)

Гомологичные двухроматидные хромосомы полностью расходятся к полюсам клетки. В норме каждая дочерняя клетка получает одну гомологичную хромосому из каждой пары гомологов. Формируются два гаплоидных ядра, которые содержат в два раза меньше хромосом, чем ядро исходной диплоидной клетки. Каждое гаплоидное ядро содержит только один хромосомный набор, то есть каждая хромосома представлена только одним гомологом. Содержание ДНК в дочерних клетках составляет 2с.

В большинстве случаев (но не всегда) телофаза I сопровождается цитокинезом.







Date: 2015-09-02; view: 2375; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.009 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию