Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Прямая репарация





Прямая репарация — наиболее простой путь устранения повреждений в ДНК, в котором обычно задействованы специфические ферменты, способные быстро (как правило, в одну стадию) устранять соответствующее повреждение, восстанавливая исходную структуру нуклеотидов. Так действует, например, O6-метилгуанин-ДНК-метилтрансфераза, которая снимает метильную группу с азотистого основания на один из собственных остатков цистеина.

Эксцизионная репарация

Эксцизионная репарация (англ. excision — вырезание) включает удаление повреждённых азотистых оснований из ДНК и последующее восстановление нормальной структуры молекулы.

Пострепликативная репарация

Tип репарации, имеющей место в тех случаях, когда процесс эксцизионной репарации недостаточен для полного исправления повреждения: после репликации с образованием ДНК, содержащей поврежденные участки, образуются одноцепочечные бреши, заполняемые в процессе гомологичной рекомбинации при помощи белка RecA.

Пострепликативная репарация была открыта в клетках E.Coli, не способных выщеплять тиминовые димеры. Это единственный тип репарации, не имеющий этапа узнавания повреждения.

 

Молекулярные основы наследственности. Генетическая рекомбинация у вирусов, прокариот и эукариот. Модели Холдея, Мезельсона-Реддинга, Жостака. Генная конверсия. Сайт-специфическая рекомбинация.

Материальным носителем наследственности является молекула дезоксирибонуклеиновой кислоты (ДНК). Молекула ДНК состоит из двух нитей, закрученных друг относительно друга. Каждая из цепочек образована отдельными блоками - нуклеотидами, в последовательности которых закодирована генетическая информация. Информация считывается лишь с одной нити, вторая способствует более компактной упаковке огромной молекулы в клетке.

Клетка обладает способностью на основе ДНК строить молекулы белков. Генетический код универсален - у всех организмов, от простейших до самых высоко организованных определенная последовательность нуклеотидов "воплощается" в идентичную структуру белка. Функции белков в организме необыкновенно разнообразны, их специфика прямо или опосредованно влияет на любое свойство индивидуума.

Рекомбинация генетическая, реорганизация генетического материала, обусловленная обменом отдельными сегментами (участками) двойных спиралей ДНК.

Генетическая рекомбинация - главный фактор непостоянства генома, основа большинства его изменений, обусловливающая естеств. отбор, микро- и макроэволюции.

Различают два основных типа генетической рекомбинации: 1) "законную" (общую, или гомологичную), при которой происходит обмен гомологичными (одинаковыми) участками молекул ДНК; 2) "незаконную" (негомологичную), в основе которой лежит обмен негомологичными участками ДНК.

Если обмен между разными молекулами ДНК осуществляется только в участках со строго определенными нуклеотидными последовательностями, генетическая рекомбинация называют сайт-специфичной, если в любых местах молекулы ДНК-сайт - неспецифичной.

Законная генетическая рекомбинация обычно сайт-неспецифична, хотя довольно часто у бактерий и высших организмов она может проявлять черты сайт-специфичности, т. е. избирательности к определенным нуклеотидным последовательностям ДНК (т. наз. горячие точки рекомбинации). Такие последовательности резко повышают частоту генетическая рекомбинация в тех участках генома, в которых они локализованы. Незаконная генетическая рекомбинация может быть как сайт-неспецифичной, так и весьма специфичной относительно участка обмена.

Законная генетическая рекомбинация наблюдается, например, между двумя копиями какой-либо хромосомы. У эукариот (все организмы, за исключением бактерий и синезеленых водорослей) наиболее типичен обмен участками гомологичных хромосом в мейозе (деление клеток, в результате которого происходит уменьшение числа хромосом в дочерних клетках - основная стадия образования половых клеток). Этот обмен может происходить между плотно конъюгированными хромосомами на ранних стадиях развития яйца или сперматозоида. Реже-законная генетическая рекомбинация осуществляется при обычном делении клеток (с сохранением числа хромосом)-митозе.

У прокариот (бактерии и синезеленые водоросли), у которых отсутствует мейоз, а геном представлен только одной молекулой ДНК, законная генетическая рекомбинация сопряжена с такими естественными. формами обмена и переноса генетического материала, как конъюгация (хромосомы из донорской клетки передаются в рециниентную через протоплазменный мостик-пиль), трансформация (ДНК проникает из среды через клеточную оболочку), трансдукция (передача ДНК осуществляется бактериофагом, или вирусом бактерий). У вирусов генетическая рекомбинация происходит при заражении ими клеток. После лизиса клетки обнаруживаются вирусы с рекомбинантными ДНК. У прокариот генетическая рекомбинация осуществляют специальные клеточные белки (многие из них ферменты).


В основе молекулярного механизма законной генетической рекомбинации лежит принцип "разрыв-воссоединение" двух гомологичных молекул ДНК. Этот процесс (его наз. кроссинговер) включает несколько промежуточных этапов: 1) узнавание участков; 2) разрыв и реципрокное (крест-накрест) воссоединение молекул: замена одних цепей гомологичными; 3) устранение ошибок, возникающих в результате неправильного спаривания участков. Точка обмена может возникать на любом участке гомологичных нуклеотидных последовательностей хромосом, вовлекаемых в обмен. При этом в точке обмена обычно не происходит изменения нуклеотидных последовательностей. Точность разрыва и воссоединения чрезвычайно велика: ни один нуклеотид не утрачивается, не добавляется и не превращается в к.-н. другой.

Основой всех предложенных схем генетическая рекомбинация послужила так называемая модель Холлидея, согласно которой генетическая рекомбинация начинается с разрыва только одной из двух цепей спирали ДНК. Вслед за разрывом один конец цепи вытесняется другим концом, который наращивается ДНК-полимеразой. Вытесненный конец разорванной цепи спаривается со второй молекулой ДНК (образуется т. наз. гетеродуплекс), в свою очередь вытесняя там участок одной из ее цепей. В конце концов одиночные гомологичные цепи обмениваются реципрокно. После этого первонач. этапа спаривания две гомологичные спирали ДНК удерживаются вместе благодаря перекрестному обмену цепями-по одной от каждой спирали (см. рис.). Точка перекрестка далее может мигрировать, в результате чего дополнительно образуются или растут гетеродуплексные участки на обеих молекулах ДНК.

Структура с перекрещенными цепями может существовать в разл. стереоизомерных формах, возникающих в результате вращения составляющих ее элементов относительно друг друга. Изомеризация, которая как и др. стадии генетической рекомбинации контролируется генетически, изменяет положение двух пар цепей: две ранее перекрещивавшиеся цепи становятся неперекрещивающимися и наоборот.

Для того чтобы вновь восстановились две отдельные спирали ДНК и тем самым прекратился процесс спаривания, в каждой из двух перекрещенных цепей должен произойти разрыв. Если он происходит до того, как прошла изомеризация, то две исходные спирали ДНК отделяются друг от друга так, что у каждой из них генетически перестроенной оказывается только одна цепь. Если же разрыв двух перекрещенных цепей происходит после изомеризации, то обе молекулы ДНК претерпевают полную реорганизацию: часть каждой исходной спирали оказывается присоединенной (ступенчатым соединением) к части другой спирали.

Законная генетическая рекомбинация приводит к возникновению новых комбинаций специфических аллелей (различной формы одного и того же гена, обусловливающие различные варианты развития одного и того же признака-группы


Незаконная генетическая рекомбинация имеет выраженный локальный характер. В этом случае весь процесс с его начальным этапом узнавания, который сводит вместе две спирали ДНК, направляется особым рекомбинац. ферментом; спаривания оснований здесь не требуется (даже в тех случаях, когда это все-таки происходит, в процессе участвует не более неск. пар оснований). Интеграция транспозонов, плазмид и умеренных фагов в бактериальный геном может служить примером генетическая рекомбинация этого типа. Подобный механизм существует также и в эукариотич. клетках.

При незаконной генетической рекомбинации в обмен вступают короткие специфические нуклеотидные последовательности одной или обеих спиралей ДНК, участвующих в этом процессе. Таким образом такая генетическая рекомбинация изменяет распределение нуклеотидных последовательностей в геноме-соединяются участки ДНК, которые до этого не располагались в непрерывной последовательности рядом друг с другом. Подобный обмен гетерологич. участками ДНК приводит к возникновению вставок, делеций, дупликаций и транслокаций генетического. материала.

У эукариот перемещения разных генетич. элементов, сопряженные с незаконной генетическая рекомбинация, осуществляются преим. не в мейозе, когда контактируют парные хромосомы. а во время обычных клеточных циклов (митозе). Незаконная генетическая рекомбинация играет важную роль в эволюционной изменчивости, т. к. благодаря ей осуществляются самые разнообразные, нередко кардинальные, перестройки генома и, следовательно, создаются предпосылки для качеств. изменений в эволюции данного организма.

Модель Холидея. Наблюдая в микроскоп хиазмы, анализируя их строение, можно предположить, что процесс рекомбинации начинается с образования двух одноцепочечных разрывов в разных молекулах ДНК. Именно такую гипотезу высказал Робин Холлидей, предложивший в 1964 г. стройную и изящную модель рекомбинационных процессов у эукариот, основанную на принципе «разрыв-воссоединение пар гомологичных молекул ДНК». Согласно этой модели необходимым этапом рекомбинации является конъюгация, т.е. попарное сближение сестринских хроматид гомологичных хромосом с образованием взаимостабильных структур - бивалентов, при котором может происходить обмен генетическим материалом. Процесс обмена одноцепочечными участками между родительскими нитями ДНК состоит из нескольких этапов. Формирование структуры Холлидея. 1. После репликации ДНК и, следовательно, удвоения хромосом, в ранней профазе мейоза наблюдается попарное сближение сестринских хроматид гомологичных хромосом с образованием бивалентов (т.е. конъюгация). 2. В каждой молекуле ДНК на двух сближенных гомологичных участках несестринских хроматид фермент никаза делает симметричные одноцепочечные разрезы. 3. Свободные концы цепей около разрывов отделяются от комплементарных партнеров и перебрасываются на бреши, образовавшиеся в гомологичных молекулах ДНК. 4. Концы переброшенных цепей лигируются с концами цепей реципиентных молекул ДНК, при этом образуется крестообразная структура Холлидея с гибридным районом, гетеродуплексом. Таким образом, две претерпевшие рекомбинацию хроматиды состоят в области концевых отделов из родительских цепей ДНК, а в середине — из участков, полученных от противоположных родительских молекул. 5. Центр структуры Холлидея, состоящей из двух полухиазм, может перемешаться вдоль спаренных цепей ДНК подобно замку застежки «молния», размыкая водородные связи между комплементарными основаниями внутри одной родительской молекулы ДНК и замыкая соответствующие связи между основаниями цепей из двух разных молекул ДНК. В результате такой миграции полухиазм в обеих родительских молекулах ДНК могут образовываться протяженные гетеродугшексные участки (у дрожжей зона гибридной ДНК достигает 1 000 п.н). Разрешение структуры Холлидея. 6. Структура Холлидея, состоящая из двух пар цепей (одна пара пересекающихся, другая - непересекающихся), спонтанно и под контролем может подвергаться изомеризации. Чтобы восстановить биспиральную структуру обеих молекул ДНК и таким образом закончить процесс их конъюгации, пересекающиеся цепи должны быть разрезаны. Еще одна изомеризация с поворотом одной из полухиазм вокруг точки перекреста на 180° приводит к образованию второй изомерной формы структуры Холлидея. 7. При разрезании полученного изомера по горизонтальной оси (в цепях, претерпевших обмен) две образовавшиеся молекулы ДНК не являются рекомбинантными по родительским маркерам (АВ и ab), фланкирующим область перекреста, но обе содержат по гетеродуплексному участку. 8. При разрезании по вертикальной оси (в интактных цепях) образовавшиеся линейные молекулы рекомбинантны по родительским генетическим маркерам, расположенным по обеим сторонам от гетеродуплексного участка ДНК. Этапы 7 и 8 завершаются лигированием концов фрагментов, составляющих рекомбинантные и нерекомбинантные молекулы.


Модель Мезельсона-Реддинга. Модель Жостака в генетике. Один из не укладывающихся в модель Холлидея фактов — асимметричный обмен цепями ДНК, наблюдающийся у ряда грибов Ascomycetes. Для устранения этого несоответствия в середине 70-х годов теперь уже прошлого XX века М. Мезельсон и К. Рэддинг модифицировали модель Холлидея, предположив, что в начале рекомбинации гетеродуплексный участок образуется не на двух, а только на одной молекуле ДНК. После образования одноцепочечного разрыва в ДНК одной хроматиды происходит репарационный синтез и вытеснение свободного конца разорванной цепи. Вытесняемый конец внедряется в структуру двойной спирали партнера, в свою очередь, вытесняя там участок одной из ее цепей, в результате чего образуется петля. Петля расщепляется нуклеазами, и с концом, образовавшимся при ее деградации, ковалентно соединяется конец внедрившейся цепи. В то же время в ДНК, претерпевшей одноцепочечный разрыв, как результат репарационного синтеза формируется асимметричный гетеродуплекс. Изомеризация приводит к образованию структуры Холлидея. Миграция полухиазм порождает симметричные участки гетеродуплексной ДНК в обоих партнерах. Разрешение структуры Холлидея при расщеплении в области перекреста может завершиться рекомбинацией фланкирующих маркеров или сохранением типа сцепления, характерного для родительских молекул ДНК.

Однако двухцепочечные разрывы ДНК постоянно возникают в процессе нормальной жизнедеятельности клеток. У дрожжей они играют ключевую роль в инициации мейотической рекомбинации. Последовательность событий, приводящих к рекомбинации в данном случае, более сложна, чем в модели Холлидея. 1-2. Вначале частичная деградация разорванных сестринских хроматид под действием экзонуклеаз приводит к образованию выступающих 3'-концов. 3. Затем одна из цепей взаимодействует с несестринской хроматидой и замещает в ней такую же цепь, которая, в свою очередь, образует гетеродуплекс с оставшимся одноцепочечным участком. Область спаривания расширяется, дополнительный синтез восполняет утерянную информацию. 4. В результате возникает промежуточный продукт, содержащий с обеих сторон от сайта двухцепочечного разрыва по две полухиазмы Холлидея. Кроме того, в его составе есть два гетеродуплексных участка. 5. Этот промежуточный продукт разрешается на конечные продукты рекомбинации под действием резольвазы, разрезающей полухиазмы либо в паре цепей, находящихся в точке перекреста, либо в интактной паре. Генная конверсия (gene conversion) [греч. gen(os) — род, происхождение; лат. conversio — изменение, превращение] — рекомбинации между отдельными частями генов, замена некоторой нуклеотидной последовательности ДНК гомологичной ей последовательностью нуклеотидов. Процесс Г.к. обычно инициируется формированием гибридной ДНК между двумя частично комплементарными цепями. В настоящее время используется следующая классификация Г.к.: а) Г.к. между сестринскими хромосомами по гомологичному локусу; б) Г.к. между различными локусами в одной или разных хромосомах. Конверсия такого типа имеет широкое распространение в различных мультигенных семействах. Само явление впервые описано Г. Книпом у нейроспоры в 1928 г., а термин «Г.к.» предложен Г. Винклером в 1930 г. Длительное время термин «Г.к.» применяли только к нарушению стандартного менделевского расщепления 2А: 2а в тетрадах аскоспор у грибов-аскомицетов, обнаруженному К. Линдегреном в 1949 г. В дальнейшем его распространили на все процессы, в которых происходит превращение одного аллеля в другой путем коррекции рекомбинационного гетеродуплекса.

Таким образом, термин генная конверсия означает замену некоторой последовательности ДНК гомологичной ей последовательностью. Процесс генной конверсии обычно инициируется формированием гибридной ДНК между двумя частично комплементарными цепями. Как правило, они обычно принадлежат двум двуцепочечным молекулам ДНК (Baltimore, 1981; Meselson, Radding, 1975).

Сайт-специфическая рекомбинация (site-specific recombination) [англ. site — участок, местоположение; лат. specificus — видоопределяющий, видовой; лат. re- — приставка, означающая возобновление, повторность действия, и combinatio — соединение] — объединение путем разрыва и последующего соединения двух молекул ДНК или участков одной молекулы, происходящее по определенным гомологичным нуклеотидным последовательностям с помощью рекомбиназ. С.-с.р. широко распространена у прокариот и низших эукариот и обычно происходит между определенными нуклеотидными последовательностями ДНК в пределах очень коротких участков гомологии (15—30 п.н.), за счет взаимодействия белков, которые специфически связываются с этими сайтами. Напр., она обеспечивает интеграцию (включение) ДНК умеренных фагов в хромосомы бактерий, инверсию (изменение ориентации) отдельных участков ДНК в хромосомах бактерий и бактериофагов и в 2-микронной плазмиде дрожжей, а также другие процессы, играющие важную роль в циклах развития фагов и бактерий. Редкий, если не единственный, пример С.-с.р. у многоклеточных животных — перестройки в нуклеотидных последовательностях ДНК, кодирующих иммуноглобулины (см. Иммуноглобулины). Все изученные ферменты, непосредственно осуществляющие С.-с.р. у фагов и бактерий, а также белок, катализирующий инверсию в 2-микронной плазмиде дрожжей, являются сайт-специфическими топоизомеразами I.

 







Date: 2015-09-02; view: 1588; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию