Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Условия выполнения закона чистоты гамет





1. Нормальный ход мейоза. В результате нерасхождения хромосом в одну гамету могут попасть обе гомологичные хромосомы из пары. В этом случае гамета будет нести по паре аллелей всех генов, которые содержатся в данной паре хромосом.

Моногенные болезни наследуются в соответствии с законами классической генетики Менделя. Соответственно этому, для них генеалогическое исследование позволяет выявить один из трёх типов наследования: аутосомно-доминантный, аутосомно-рецессивный и сцепленное с полом наследование.

Это наиболее широкая группа наследственных заболеваний. В настоящее время описано более 4000 вариантов моногенных наследственных болезней, подавляющее большинство которых встречается довольно редко (например, частота серповидноклеточной анемии — 1/6000).

Широкий круг моногенных болезней образуют наследственные нарушения обмена веществ, возникновение которых связано с мутацией генов, контролирующий синтезферментов и обусловливающих их дефицит или дефект строения — ферментопатии.

 

28.Полигибридное скрещивание

 

скрещивание форм, отличаю­щихся друг от друга, по нескольким парам альтернативных при­знаков. При этом особь, гетерозиготная по n парам генов, может произвести 2n типов гамет, а в F2, при расщеплении потомства полигибридного скрещивания может образоваться 3n геноти­пов. Частоту данного генотипа в потомстве родителей, отличающихся определенным числом независимо наследуемых генов, можно вычислить следующим образом: надо подсчитать вероят­ность соответствующего генотипа для каждой пары генов от­дельно, а затем перемножить. Например, надо рассчитать часто­ту генотипа AabbCc в потомстве от скрещивания АаВЬсст × ×АаВЬСс. Вероятность генотипа Аа в потомстве от скрещивания Аа × Аа равна 1/2; вероятность генотипа bb в потомстве от скре­щивания ВЬ × ВЬ равна 1/4; вероятность генотипа Сс равна так­же 1/2. Следовательно, вероятность генотипа AabbCc составляет 1/2*1/4*1/2 = 1/16.

 

31. Доказательства генетической роли ДНК.

1928г. Опыты Фредерика Гриффита

Известно, что бактерия Pneutnococcus pneumoniae имеет несколько форм. Вирулентность бактерии определяется наличием мукополисахаридной капсулы, расположенной па поверхности клетки. Эта капсула защищает бактерию от воздействий со стороны организма-хозяина. В результате, размножившиеся бактерии убивают зараженное животное. Бактерии этого штамма (S-штамм) образуют гладкие колонии. Авирулентные формы бактерий не имеют защитной капсулы и образуют шероховатые колонии (R-штамм). Микробиолог Фредерик Гриффитс в 1928 году инъецировал мышам живого пневмококка R-штамма вместе с S-штаммом, убитым высокой температурой (65°С). Спустя некоторое время ему удалось выделить из заражённых мышей живых пневмококков, обладающих капсулой. Таким образом, оказалось, что свойство убитого пневмококка - способность образовывать капсулу - перешло к живой бактерии, т.е. произошла трансформация. Поскольку признак наличия капсулы является наследственным, то следовало предположить, что какая-то часть наследственного вещества от бактерий штамма S перешла к клеткам штамма R.
В 1944 году О.Т. Эвери, К.М. Маклеод и М. Маккарти показали, что такое же превращение типов пневмококков может происходить в пробирке, т.е. in vitro. Эти исследователи установили существование особой субстанции -"трансформирующего принципа", -экстракта из клеток штамма S, обогащенного ДНK. Как далее выяснилось, ДНK, выделенная из клеток S-штамма добавленная в культуру R-штамма, трансформировала часть клеток в S-форму, Клетки стойко передавали это свойство при дальнейшем размножении. Обработка "трансформирующего фактора" ДНК-азой, ферментом разрушающим ДНK, блокирована трансформацию. Эти данные впервые показали, что именно ДНК, а не белок, как полагали до тех пор, является наследственным материалом.
2. 1952г. Эксперимент Альфреда Херши и Марты Чейз.
Как известно, фаг Т2 является вирусом, инфицирующим бактерию E. coli. фаговые частицы абсорбируются на наружной поверхности клетки, их материал проникает внутрь и примерно через 20 минут бактерия лизируется, освобождая большое количество фаговых частиц - потомков. В 1952 году Альфред Херши и Марта Чейз инфицировали бактерии фагами Т2, которые были мечены радиоактивными соединениями: ДНК - с помощью 32P. Белковая часть фага - 35S. После инфекции бактерии фагами, с помощью центрифугирования удалось выделить две фракции: пустые белковые оболочки фага и бактерии, инфицированных фаговой ДНК. Оказалось, что 80% метки 35S осталась в пустых фаговых оболочках, а 70% метки 32P - в инфицированных бактериях. Фаги-потомки получили только около 1% исходного белка, меченного 35S, однако они же обнаружили около 30% метки 32P.
Результаты этого эксперимента прямо показали, что ДНК родительских фагов проникает в бактерии и затем становиться составляющей развившихся новых фагов частиц.
3. 1957г. Опыты Френкеля - Конрата
Френкель-Конрат работал с вирусом табачной мозаики (ВТМ). В этом вирусе содержится РНК, а не ДНК. Было известно, что разные штаммы вируса вызывают разную картину поражения листьев табака. После смены белковой оболочки "переодетые" вирусы вызывали картину поражения, характерную для того штамма, чья РНК была покрыта чужим белком.
Следовательно, не только ДНК, но и РНК может служить носителем генетической информации.
На сегодняшний день существуют сотни тысяч доказательств генетической роли нуклеиновых кислот. Приведенные три являются классическими.

 

34. Гетерогенность популяций и методы определения

гетерозиготных носителей

Термин «популяция» происходит от латинского populus – население. Долгое время (начиная с конца XVIII в.) популяциейназывали (а часто называют и сейчас) любую группировку организмов, обитающих на определенной территории.

В 1903 г. датский генетик Вильгельм Людвиг Иоганнсен впервые употребил термин «популяция» для обозначения группы особей, неоднородной в генетическом отношении.

Английский математик Годфри Харди (1908) сформулировал понятия панмиксии (свободного скрещивания) и создал математическую модель для описания генетической структуры панмиктической популяции, т.е. популяции свободно скрещивающихся раздельнополых организмов. Немецкий врач-антропогенетик Вильгельм Вайнберг (в этом же 1908 г.) независимо от Харди создал сходную модель панмиктической популяции.

Учение о неоднородности популяций развил российский генетик Сергей Сергеевич Четвериков. Его работой «О некоторых аспектах эволюционного процесса с точки зрения современной генетики» (1926) было положено начало современной эволюционной и популяционной генетики. В 1928 г. Александр Сергеевич Серебровский создает учение о генофонде.

В течение 1920–1950-ых гг. в англоязычных странах формируется понятие идеальной популяции, и на основании этого понятия интенсивно развивается математическая генетика (Сьюелл Райт, Рональд Фишер, Джон Холдейн и др.).

В нашей стране, несмотря на господство лысенковщины, учение о популяциях развивалось в работах И.И. Шмальгаузена (популяция рассматривалась как элементарная единица эволюционного процесса), А.Н. Колмогорова (анализировались случайные процессы в популяциях) и других ученых. Однако в большинстве случаев популяция рассматривалась с экологической точки зрения (например, как форма существования вида; С.С. Шварц). Лишь в 1960–1970-е гг., благодаря работам Н.В. Тимофеева-Ресовского и его сотрудников формируется синтетический подход к определению популяции как эколого-генетической системы.

 

С точки зрения генетики, популяция – это генетическая система, обладающая исторически сложившейся генетической структурой. Основные положения популяционной генетики сложились на основании изучения природных и модельных популяций высших раздельнополых животных (моллюсков, насекомых, позвоночных), которые воспроизводят себя с помощью нормального полового размножения – амфимиксиса, или объединения женских и мужских гамет. В таких случаяхгруппировка особей, способных скрещиваться между собой и производить полноценное (т.е. жизнеспособное и плодовитое) потомство, называется генетической, или менделевской популяцией. В свою очередь, потомки, достигшие половозрелости, также должны скрещиваться между собой и производить полноценное потомство, то есть популяция должна существовать длительное число поколений.

Таким образом, с точки зрения генетики, популяция представляет собой множество особей, объединенных достаточно высокой степенью родства.

В рамках генетического подхода выделяется представление об идеальной популяции.

 

Идеальная популяция – это абстрактное понятие, которое широко используется в моделировании микроэволюционных процессов. При описании систем скрещивания в идеальной популяции широко используется понятие панмиксии – случайного свободного скрещивания, при котором вероятность встречи гамет не зависит ни от генотипа, ни от возраста скрещивающихся особей. Если исключить половой отбор, то к панмиктической популяции применима концепция гаметного резервуара, согласно которой в популяции в период размножения формируется гаметный резервуар (генный пул), включающий банк женских гамети банк мужских гамет. Если члены популяции равноудалены друг от друга, то встреча гамет и формирование зигот происходят случайным образом. (Подробнее понятие идеальной популяции будет рассмотрено ниже.)

 

Реальные популяции в большей или меньшей степени отличаются от идеальной. Одним из наиболее существенных отличий является множество способов воспроизведения. По способу воспроизведения различают следующие типы популяций:

амфимиктические – основным способом размножения является нормальное половое воспроизведение;

амфимиктические панмиктические – при формировании брачных пар наблюдается панмиксия (свободное скрещивание);

амфимиктические инбредные – при формирование брачных пар наблюдается близкородственное скрещивание (инбридинг, инцухт, инцест); крайним случаем близкородственного скрещивания является самооплодотворение;

апомиктические – наблюдаются различные отклонения от нормального полового процесса, например, апомиксис, партеногенез, гиногенез, андрогенез; наблюдается у агамных (бесполых) форм;

клональные – при отсутствии полового процесса и размножении только вегетативным путем или с помощью спор бесполого размножения (например, конидий); частным случаем клонирования является полиэмбриония – развитие нескольких зародышей из одной зиготы:

комбинированные – например, клонально-амфимиктические при метагенезе у кишечнополостных (чередовании бесполого и полового размножения) и гетерогонии (чередовании партеногенетического и амфимиктического поколений у червей, некоторых членистоногих и низших хордовых).

 

Определения

Панмиксия (свободное скрещивание) означает, что на формирование брачных пар не влияет генотип или возраст особей, участвующих в размножении. Фактически это означает, что рассматриваемый признак не оказывает заметного влияния на формирование брачных пар.

Инбридинг – близкородственное скрещивание у животных; инцухт – близкородственное скрещивание у растений; инцест (кровосмешение) – близкородственное скрещивание у человека.

Апомиксис – это множество форм образования зародышей, при которых не происходит объединения двух клеток. Обычно этот термин используют по отношению к растениям. При апомиксисе новый организм может развиваться из неоплодотворенной яйцеклетки (см. партеногенез), а также из какой-либо другой специализированной клетки зародышевого мешка (например, из клеток–антипод или синергид), реже – непосредственно из клеток нуцеллуса или покровов семязачатка. Примеры растений–апомиктов: ястребинки, одуванчики, манжетки.

Партеногенез – это девиантная форма полового процесса, при которой новый организм развивается из неоплодотворенной яйцеклетки без участия мужских гамет. Различают нередуцированный партеногенез с развитием зародыша из диплоидной клетки и редуцированный партеногенез с развитием зародыша из гаплоидной яйцеклетки. Как правило, партеногенез чередуется с нормальным половым размножением (при цикломорфозе у коловраток, дафний, тлей).

Гиногенез – это девиантная форма полового процесса, при которой мужские гаметы служат для стимуляции развития нового организма из яйцеклетки, но оплодотворения не происходит, и мужское ядро (пронуклеус) погибает. В этом случае у дочернего организма сохраняются только материнские хромосомы. Гиногенез встречается у гибридов рыб, земноводных, а также в бессамцовых популяциях.

Андрогенез – это девиантная форма полового процесса, при которой происходит оплодотворение, но затем женское ядро (пронуклеус) погибает, а мужское ядро замещает его в качестве ядра зиготы. В этом случае у дочернего организма сохраняются только отцовские хромосомы. Андрогенез обычно наблюдается в лабораторных условиях.

Агамные формы – организмы, у которых отсутствует нормальный половой процесс.

 

Генетическая структура популяций

Каждая популяция обладает собственной генетической структурой. Генетическая структура популяций определяется исходным соотношением аллелей, естественным отбором и элементарными эволюционными факторами (мутационный процесс и давление мутаций, изоляция, популяционные волны, генетико-автоматические процессы, эффект основателя, миграции и др.). Для описания генетической структуры популяций используются понятия «аллелофонд» и «генофонд».

Аллелофонд. Аллелофонд популяции – это совокупность аллелей в популяции. Если рассматриваются два аллеля одного гена: А и а, то структура аллелофонда описывается уравнением: pA + qa = 1. В этом уравнении символом pA обозначаетсяотносительная частота аллеля А, символом qa – относительная частота аллеля а.

Популяции, в которых структура аллелофонда остается относительно постоянной в течение длительного времени, называются стационарными.

Если рассматриваются три аллеля одного гена: а1, а2,, а3, то структура аллелофонда описывается уравнением: p а1 + q а2+ r а3 = 1. В этом уравнении символами p, q, r обозначаются соответствующие частоты аллелей.

Если рассматриваются несколько аллелей нескольких генов (a, b, c), то структура аллелофонда описывается системой уравнений:

p1 a1 + p2 a2 + p3 a3 +... + pi ai = 1

q1 b1 + q2 b2 + q3 b3 +... + qi bi = 1

r1 c1 + r2 c2 + r3 c3 +... + ri ci = 1

.......................................................

В этих уравнениях символами pi, qi, ri обозначены относительные частоты аллелей разных генов. Однако в простейших случаях рассматриваются только моногенные диаллельные системы, например: А–а. В популяции с общей численностью особейNобщ и известной численностью особей с генотипами АА, Аа, аа относительные частоты аллелей рассчитываются по формулам:

 

p (A) = 2  N (AA) + N (Aa)
2  N общ.

 

q (a) = 2  N (aa) + N (Aa)
2  N общ.

 

или q (a) = 1 – р (А)  
 

 

 

Генофонд. Термин генофонд употребляется в разных значениях. Основоположник учения о генофонде и геногеографии Александр Сергеевич Серебровский называл генофондом «совокупность всех генов данного вида..., чтобы подчеркнуть мысль о том, что в лице генофонда мы имеем такие же национальные богатства, как и в лице наших запасов угля, скрытых в наших недрах» (1928). Однако это выражение в настоящее время используется для определения генетического потенциала, а генофондом называют совокупность всех генотипов в популяции.

При изучении природных популяций часто приходится сталкиваться с полным доминированием: фенотипы гомозигот ААи гетерозигот Аа неразличимы. Кроме того, в природе широко распространено полигенное определение признаков, причем типы взаимодействия неаллельных генов (комплементарность, эпистаз, полимерия) не всегда известны. Поэтому на практике часто изучают не генофонд, а фенофонд популяций, то есть соотношение фенотипов. В настоящее время развивается раздел генетики популяций, который называется фенетика популяций.

 

35. Секвенирование.

Секвенирование биополимеров (белков и нуклеиновых кислот — ДНК и РНК) — определение их первичной аминокислотной или нуклеотидной последовательности (отангл. sequence — последовательность). В результате получается линейное символьное описание, которое сжато поясняет атомную структуру молекулы. Для секвенирования применяются методы Эдмана, Сэнгера и другие; в настоящее время для секвенирования нуклеиновых кислот обычно применяется метод Сэнгера с дидезоксинуклеозидтрифосфатами (ddNTP). Обычно до начала секвенирования производят амплификацию участка ДНК, последовательность которого требуется определить, при помощи ПЦР.

Секвенирование по Сэнгеру

Дезоксинуклеотидный метод, или метод «обрыва цепи», был разработан Ф. Сенгером в 1977 году и в настоящее время широко используется для определения нуклеотидной последовательности ДНК. При дидезокси-секвенировании происходит гибридизация синтетического олигонуклеотида длиной 17—20 звеньев со специфическим участком одной из цепей секвенируемого участка. Этот олигонуклеотид является праймером, поставляющим 3'-гидроксильную группу для инициации синтеза цепи, комплементарной матрице.

Раствор с праймером распределяют по четырем пробиркам, в каждой из которых находятся четыре дезоксинуклеотида, dATP, dCTP, dGTP и dTTP (один из них — меченный радиоактивным изотопом) и один из четырех 2',3'-дидезоксинуклеотидов (ddATP, ddTTP, ddGTP или ddCTP). Дидезоксинуклеотид включается по всем позициям в смеси растущих цепей, и после его присоединения рост цепи сразу останавливается.

В результате этого в каждой из четырех пробирок при участии ДНК-полимеразы образуется уникальный набор олигонуклеотидов разной длины, включающих праймерную последовательность. Далее в пробирки добавляют формамид для расхождения цепей и проводятэлектрофорез в полиакриламидном геле на четырех дорожках. Проводят радиоавтографию, которая позволяет «прочесть» нуклеотидную последовательность секвенируемого сегмента ДНК.

В более современном варианте дидезоксинуклеотиды метят четырьмя разными флуоресцентными красителями и проводят ПЦР в одной пробирке. Затем во время электрофореза в полиакриламидном геле луч лазера в определенном месте геля возбуждает флуоресценцию красителей, и детектор определяет, какой нуклеотид в настоящий момент мигрирует через гель. Современные приборы используют для секвенирования ДНК капиллярный электрофорез

 

36. Факторы генетической динамики

популяции.

В ходе эволюции организмов происходит непрерывная замена одних генотипов другими путем изменения в популяции численного соотношения качественно различающихся генотипов, что и составляет сущность динамики генетической структуры популяции. Генетическая изменчивость популяции складывается из мутационной и комбинативной изменчивости.
Равновесие генотипов в панмиктической популяции, основанное на сохранении относительных частот генов, изменяется под влиянием ряда постоянно действующих факторов, к которым относятся: мутационный процесс, отбор, численность популяции, изоляция и ряд других факторов.

См. тетр!

39.Тесты на аллелизм: правила и

исключения.

cis-trans-test - цис-транс-тест, функциональный тест на аллелизм.

Mетод определения принадлежности двух рецессивных аллелей (мутаций), сходных в фенотипическом выражении, к одному и тому же или разным генам; для решения этого вопроса проводится эксперимент по схеме:

  цис-положение транс-положение
Аллельные мутации ----˟-------˟---- ----˟------------
  ----------------- -------------˟---
  дикий тип мутант
Неаллельные мутации ----˟---│----˟--- ---˟----│--------
  --------│-------- --------│----˟---
  дикий тип дикий тип;

ограничения достоверности Ц.>-т.-т. связаны с невозможностью анализа таким способом полярных мутаций <polarity mutation>, а также с нарушающим истинную картину влиянием межаллельной комплементации.

(лат. cis — по эту сторону, trans — через, за пределами и англ. test — испытание), метод генетич. анализа, позволяющий определить принадлежность двух рецессивных мутаций, имеющих сходное фенотипич. проявление, к одному или разным генам. Предложен Э. Льюисом в 1951. В основе Ц.-т.-т. лежат представления о гене как единице функции. Состоит из двух тестов — транс-теста и цис-теста (последний используют редко). Транс-тест (тест на комплементарность, функциональный тест на аллелизм) заключается в получении гибридов (гетерокарионов), у к-рых две исследуемые мутации находятся на разных гомологичных хромосомах (транс-положение), и анализе их фенотипа. Если обе мутации действуют на разные независимые функции (затрагивают два разных гена), то такой гибрид имеет дикий фенотип, т. к. образуется ди-гетерозигота, в к-рой нормальные аллели доминируют над мутантными. Если исследуемые мутации действуют на одну и ту же функцию (повреждают один и тот же ген), то гибрид должен иметь мутантный фенотип. Этот простой функц. критерий аллелизма, предложенный в 20-х гг. Т. Морганом, усложняется в случаях межгенной некомплементар-ности и межаллельной комплементации. Цис-тест заключается в получении гибридов (гетерокарионов), у к-рых обе исследуемые мутации привнесены одним из родителей, тогда как в хромосомах других содержатся нормальные аллели. Очевидно, что гибриды с цис-положением мутаций должны иметь фенотип дикого типа независимо от того, относятся ли исследуемые мутации к одному или разным генам. Это одна из причин редкого использования цис-теста. Др. причина — трудность получения цис-положения мутаций в случае их тесного сцепления. Однако этот тест совершенно необходим для выявления цис-доминантных мутаций в оперонах. С. Бензер (в 1957) предложил назвать генетич. единицу функции, выявляемую с помощью Ц.-т.-т., цистроном. Термин «цистрон», являющийся синонимом термина «ген», используют в лит-ре редко.

 

40.Методы работы с ДНК.

метод амплификации нуклеиновых кислот (НК) полимеразной цепной реакцией (ПЦР) уже достаточно широко используется в практической медицине как эффективный инструмент лабораторной диагностики.

Метод ПЦР при выявлении ДНК включает три стадии:

На первой стадии при температуре 94°С (или выше) происходит денатурация двойной цепи исследуемой ДНК (стадия денатурации).

На второй стадии два олигонуклеотида-праймера, строго специфичные (гомологичные) к определенным участкам антипараллельных цепей исследуемой ДНК, связываются (образуют гибриды с помощью водородных связей) с этими участками ДНК (стадия отжига).

На третьей стадии при температуре 70-72°С с участием термофильной ДНК-полимеразы и дезоксинуклеозид-5ў-трифосфатов происходит синтез новых цепей ДНК. Инициация синтеза ДНК происходит в местах связывания олигонуклеотидов-праймеров с исследуемой ДНК, матрицей для синтеза служат исходные цепи ДНК (стадия полимеризации).

Таким образом, за цикл, включающий три стадии, происходит удвоение каждой из двух антипараллельных цепей ДНК. При проведении 20 таких циклов теоретически происходит увеличение количества исходной ДНК в миллион и более раз.

Наличие специфического продукта ПЦР (ампликона) в подавляющем большинстве случаев детектируют методом электрофореза в агарозном или полиакриламидном гелях. Специфичность полосы амплифицированной ДНК подтверждается ее положением (размерами) по отношению к маркерным фрагментам и положительному ДНК-контролю. Дополнительные доказательства специфичности ампликона получают методами рестрикционного анализа, гибридизации и прямого секвенирования.

Основным достоинством метода ПЦР является чрезвычайно высокая чувствительность анализа – до 1 копии геномной ДНК возбудителя инфекции в исследуемой пробе в "nested"-варианте ПЦР (с "внутренней" и "внешней" парами олигонуклеотидов-праймеров). Чувствительность выявления ДНК в ПЦР с одной парой праймеров составляет обычно 30-100 копий генома в исследуемой пробе.

Для ПЦР-анализа РНК-содержащих инфекционных агентов (например, ВГС, ВКЭ) предварительно проводят стадию обратной транскрипции – получения ДНК, комплементарной вирусной РНК-матрице, для чего используют специфические праймеры к РНК и фермент – РНК-зависимую ДНК-полимеразу (обратную транскриптазу, ревертазу). Далее ПЦР-анализ проводят по схеме, описанной выше.

Возможности, заложенные в методе ПЦР, позволяют, с одной стороны, достигать максимальной специфичности анализа, т.е. отсутствия перекрестных реакций и способности выявлять ДНК конкретного инфекционного агента в присутствии ДНК других микроорганизмов и ДНК организма-хозяина, а также проводить генотипирование. С другой стороны, соответствующий выбор олигонуклеотидов-праймеров, в основном определяющих специфичность анализа ПЦР, позволяет одновременно выявлять ДНК близкородственных микроорганизмов.

Другим достоинством ПЦР-метода является то, что для ПЦР-диагностики практически всех инфекционных заболеваний может быть использован один набор оборудования, универсальные процедуры подготовки пробы и постановки анализа, а также незначительно отличающиеся (в основном структурой олигонуклеотидов-праймеров) наборы реактивов. К настоящему времени метод автоматизирован и позволяет, при необходимости, получать результаты анализа ПЦР в течение одного рабочего дня.

Высокая чувствительность и специфичность, непосредственное обнаружение инфекционного агента и возможность проведения генотипирования определяют широкую область применения метода ПЦР в клинической диагностике. В настоящее время метод ПЦР используется для:

  • ранней диагностики инфекционных заболеваний у серонегативных пациентов, когда лечение наиболее эффективно;
  • выявления персистирующих, латентных и рецидивирующих форм инфекций;
  • контроля эффективности лечения;
  • диагностики оппортунистических инфекций, часто протекающих на фоне иммунодефицита, вследствие чего постановка диагноза только по результатам серологических исследований затруднена из-за имеющихся несоответствий между параметрами иммунного ответа и протекания заболевания;
  • разрешения сомнительных результатов серологических исследований;
  • эпидемиологических исследований;
  • выявления наиболее патогенных штаммов инфекционных агентов;
  • исследования инфекционности пулированных образцов крови и ее продуктов, применяемых в терапии;
  • определения резистентности к лекарственным препаратам.

Метод ПЦР используется для постановки или подтверждения диагноза, контроля терапии в акушерско-гинекологической практике, неонатологии, педиатрии, урологии, венерологии, нефрологии, гепатологии, пульмонологии, офтальмологии, неврологии, фтизиатрии и др.

Методы ДНК-диагностики незаменимы в пренатальной диагностике наследственных заболеваний (муковисцидоза, фенилкетонурии, гемофилии и пр.), а также при установлении отцовства.

 

42. Кроссинговер мейотический и

митотический.

Кроссинго́вер (другое название в биологии перекрёст) — процесс обмена участками гомологичных хромосом во времяконъюгации в профазе I мейоза. Помимо мейотического, описан также митотический кроссинговер.

Поскольку кроссинговер вносит возмущения в картину сцепленного наследования, его удалось использовать для картирования «групп сцепления» (хромосом). Возможность картирования была основана на предположении о том, что, чем чаще наблюдается кроссинговер между двумя генами, тем дальше друг от друга расположены эти гены в группе сцепления и тем чаще будут наблюдаться отклонения от сцепленного наследования. Первые карты хромосом были построены в 1913 г. для классического экспериментального объекта плодовой мушки Drosophila melanogaster Альфредом Стёртевантом, учеником и сотрудником Томаса Ханта Моргана.

 

46. Рестрикционное картирование

Определение положения гена на генетической (физической) карте с помощью рестриктаз <restriction endonucleases>; заключается в получении фрагментов анализируемой последовательности (гена), вырезанных разными рестриктазами и электрофоретически разделенных с последующим сопоставлением их размеров и определением расстояний на генетической карте; также Р.к. - определение с помощью рестриктаз соотношения экзонов и интронов в составе гена (в этом случае один из вариантов - картирование по методу Берка-Шарпа <Berk-Shurp method>); разрешающая способность Р.к. - около 20 пар нуклеотидов.

Date: 2015-09-02; view: 668; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию