Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Познание математическое и познание непосредственное





21. Различие между познанием мате­матическим и непосредственным. — На­чала математического познания вполне отчетливы, но в обыденной жизни неупотребительны, поэтому с непри­вычки в них трудно вникнуть, зато всякому, кто вникает, они совершенно ясны, и только совсем уж дурной ум не способен построить правильного рассуждения на ос­нове столь самоочевидных начал.

Начала непосредственного познания, напротив, рас­пространены и общеупотребительны. Тут нет нужды во что-то вникать, делать над собой усилие, тут потребно всего лишь хорошее зрение, но не просто хорошее, а безупречное, ибо этих начал так много и они так раз­ветвлены, что охватить их сразу почти невозможно. Меж тем пропустишь одно — и ошибка неизбежна: вот по­чему нужна большая зоркость, чтобы увидеть все до единого, и ясный ум, чтобы, основываясь на столь из­вестных началах, сделать потом правильные выводы.

Итак, обладай все математики зоркостью, они были бы способны и к непосредственному познанию, ибо уме­ют делать правильные выводы из хорошо известных начал, а способные к непосредственному познанию были бы способны и к математическому, дай они себе труд пристально вглядеться в непривычные для них матема­тические начала.

Но такое сочетание встречается нечасто, потому что человек, способный к непосредственному познанию, да­же и не пытается вникнуть в математические начала, а способный к математическому большей частью слеп к тому, что у него перед глазами; к тому же, привыкнув делать заключения на основе хорошо им изученных точ­ных и ясных математических начал, он теряется, столк­нувшись с началами совсем иного порядка, на которых зиждется непосредственное познание. Они еле различи­мы, их скорее чувствуют, нежели видят, а кто не чув­ствует, того и учить вряд ли стоит: они так тонки и многообразны, что лишь человек, чьи чувства утонченны и безошибочны, в состоянии уловить и сделать правиль­ные, неоспоримые выводы из подсказанного чувствами; притом зачастую он не может доказать верность своих выводов пункт за пунктом, как принято в математике, ибо начала непосредственного познания почти никогда не выстраиваются в ряд, как начала познания матема­тического, и подобного рода доказательство было бы бесконечно сложно. Познаваемый предмет нужно охва­тить сразу и целиком, а не изучать его постепенно, путем умозаключений — на первых порах, во всяком случае. Таким образом, математики редко бывают способны к непосредственному познанию, а познающие непосредст­венно — к математическому, поскольку математики пы­таются применить математические мерки к тому, что доступно лишь непосредственному познанию, и приходят к абсурду, ибо желают во что бы то ни стало сперва дать определения, а уж потом перейти к основным на­чалам, меж тем для данного предмета метода умоза­ключений непригодна. Это не значит, что разум вообще от них отказывается, но он их делает незаметно, непри­нужденно, без всяких ухищрений; внятно рассказать, как именно происходит эта работа разума, никому не под силу, да и ощутить, что она вообще происходит, доступно очень немногим.

С другой стороны, когда перед человеком, познаю­щим предмет непосредственно и привыкшим охватывать его единым взглядом, встает проблема, ему совершенно непонятная и требующая для решения предварительного знакомства со множеством определений и непривычно сухих начал, он не только устрашается, но и отвращается от нее.

Что касается дурного ума, ему равно недоступно по­знание и математическое, и непосредственное.

Стало быть, ум сугубо математический будет пра­вильно работать, только если ему заранее известны все определения и начала, в противном случае он сбивается с толку и становится невыносим, ибо правильно работает лишь на основе совершенно ясных ему начал.

А ум, познающий непосредственно, не способен тер­пеливо доискиваться первоначал, лежащих в основе чис­то спекулятивных, отвлеченных понятий, с которыми он не сталкивался в обыденной жизни и ему непри­вычных.







Date: 2015-09-02; view: 318; Нарушение авторских прав



mydocx.ru - 2015-2025 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию