Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Микроядерная архитектура (модель клиент-сервер)





Эта модель является средним между двумя предыдущими моделями.

В развитии современных операционных систем наблюдается тенденция в сторону дальнейшего переноса задач из ядра в уровень пользовательских процессов, оставляя минимальное микроядро.

В этой модели вводятся два понятия:

1. Серверный процесс (который обрабатывает запросы)

2. Клиентский процесс (который посылает запросы)

В задачу ядра входит только управление связью между клиентами и серверами.

 

Модель клиент-сервер

Преимущества:

· Малый код ядра и отдельных подсистем, и как следствие меньшее содержание ошибок.

· Ядро лучше защищено от вспомогательных процессов.

· Легко адаптируется к использованию в распределенной системе.

Недостатки:

· Уменьшение производительности.

 

 

Понятия «процесс» и «поток»

 

Процесс (задача) - программа, находящаяся в режиме выполнения.

С каждым процессом связывается его адресное пространство, из которого он может читать и в которое он может писать данные.

Адресное пространство содержит:

· саму программу

· данные к программе

· стек программы

С каждым процессом связывается набор регистров, например:

· счетчика команд (в процессоре) - регистр в котором содержится адрес следующей, стоящей в очереди на выполнение команды. После того как команда выбрана из памяти, счетчик команд корректируется и указатель переходит к следующей команде,

· указатель стека

· и д.р.

Во многих операционных системах вся информация о каждом процессе, дополнительная к содержимому его собственного адресного пространства, хранится в таблице процессов операционной системы:

Управление процессом Управление памятью Управление файлами
Регистры Счетчик команд Указатель стека Состояние процесса Приоритет Параметры планирования Идентификатор процесса Родительский процесс Группа процесса Время начала процесса Использованное процессорное время Указатель на текстовый сегмент Указатель на сегмент данных Указатель на сегмент стека Корневой каталог Рабочий каталог Дескрипторы файла Идентификатор пользователя Идентификатор группы

Чтобы поддерживать мультипрограммирование, ОС должна определить и оформить для себя те внутренние единицы работы, между которыми будет разделяться процессор и другие ресурсы компьютера. В настоящее время в большинстве операционных систем определены два типа единиц работы. Более крупная единица работы, обычно носящая название процесса, или задачи, требует для своего выполнения нескольких более мелких работ, для обозначения которых используют термины «поток», или «нить».

При использовании этих терминов часто возникают сложности. Это происходит в силу нескольких причин. Во-первых, — специфика различных ОС, когда совпадающие по сути понятия получили разные названия, например задача (task) в OS/2, OS/360 и процесс (process) в UNIX, Windows NT, NetWare. Во-вторых, по мере развития системного программирования и методов организации вычислений некоторые из этих терминов получили новое смысловое значение, особенно это касается понятия «процесс», который уступил многие свои свойства новому понятию «поток». В-третьих, терминологические сложности порождаются наличием нескольких вариантов перевода англоязычных терминов на русский язык. Например, термин «thread» переводится как «нить», «поток», «облегченный процесс», «минизадача» и др. Далее в качестве названия единиц работы ОС будут использоваться термины «процесс» и «поток». В тех же случаях, когда различия между этими понятиями не будут играть существенной роли, они объединяются под обобщенным термином «задача».

 

Очевидно, что любая работа вычислительной системы заключается в выполнении некоторой программы. Поэтому и с процессом, и с потоком связывается определенный программный код, который для этих целей оформляется в виде исполняемого модуля. Чтобы этот программный код мог быть выполнен, его необходимо загрузить в оперативную память, возможно, выделить некоторое место на диске для хранения данных, предоставить доступ к устройствам ввода-вывода, например к последовательному порту для получения данных по подключенному к этому порту модему; и т. д. В ходе выполнения программе может также понадобиться доступ к информационным ресурсам, например файлам, портам TCP/UPD, семафорам. И, конечно же, невозможно выполнение программы без предоставления ей процессорного времени, то есть времени, в течение которого процессор выполняет коды данной программы.


 

В операционных системах, где существуют и процессы, и потоки, процесс рассматривается операционной системой как заявка на потребление всех видов ресурсов, кроме одного — процессорного времени. Этот последний важнейший ресурс распределяется операционной системой между другими единицами работы — потоками, которые и получили свое название благодаря тому, что они представляют собой последовательности (потоки выполнения) команд.

 

В простейшем случае процесс состоит из одного потока, и именно таким образом трактовалось понятие «процесс» до середины 80-х годов (например, в ранних версиях UNIX) и в таком же виде оно сохранилось в некоторых современных ОС. В таких системах понятие «поток» полностью поглощается понятием «процесс», то есть остается только одна единица работы и потребления ресурсов — процесс. Мультипрограммирование осуществляется в таких ОС на уровне процессов.

 

Для того чтобы процессы не могли вмешаться в распределение ресурсов, а также не могли повредить коды и данные друг друга, важнейшей задачей ОС является изоляция одного процесса от другого. Для этого операционная система обеспечивает каждый процесс отдельным виртуальным адресным пространством, так что ни один процесс не может получить прямого доступа к командам и данным другого процесса.

Виртуальное адресное пространство процесса — это совокупность адресов, которыми может манипулировать программный модуль процесса. Операционная система отображает виртуальное адресное пространство процесса на отведенную процессу физическую память.

 

При необходимости взаимодействия процессы обращаются к операционной системе, которая, выполняя функции посредника, предоставляет им средства межпроцессной связи — конвейеры, почтовые ящики, разделяемые секции памяти и некоторые другие.

 

Однако в системах, в которых отсутствует понятие потока, возникают проблемы при организации параллельных вычислений в рамках процесса. А такая необходимость может возникать. Действительно, при мультипрограммировании повышается пропускная способность системы, но отдельный процесс никогда не может быть выполнен быстрее, чем в однопрограммном режиме (всякое разделение ресурсов только замедляет работу одного из участников за счет дополнительных затрат времени на ожидание освобождения ресурса). Однако приложение, выполняемое в рамках одного процесса, может обладать внутренним параллелизмом, который в принципе мог бы позволить ускорить его решение. Если, например, в программе предусмотрено обращение к внешнему устройству, то на время этой операции можно не блокировать выполнение всего процесса, а продолжить вычисления по другой ветви программы. Параллельное выполнение нескольких работ в рамках одного интерактивного приложения повышает эффективность работы пользователя. Так, при работе с текстовым редактором желательно иметь возможность совмещать набор нового текста с такими продолжительными по времени операциями, как переформатирование значительной части текста, печать документа или его сохранение на локальном или удаленном диске. Еще одним примером необходимости распараллеливания является сетевой сервер баз данных. В этом случае параллелизм желателен как для обслуживания различных запросов к базе данных, так и для более быстрого выполнения отдельного запроса за счет одновременного просмотра различных записей базы.


 

Потоки возникли в операционных системах как средство распараллеливания вычислений. Конечно, задача распараллеливания вычислений в рамках одного приложения может быть решена и традиционными способами.

 

Во-первых, прикладной программист может взять на себя сложную задачу организации параллелизма, выделив в приложении некоторую подпрограмму- диспетчер, которая периодически передает управление той или иной ветви вычислений. При этом программа получается логически весьма запутанной, с многочисленными передачами управления, что существенно затрудняет ее отладку и модификацию.

 

Во-вторых, решением является создание для одного приложения нескольких процессов для каждой из параллельных работ. Однако использование для создания процессов стандартных средств ОС не позволяет учесть тот факт, что эти процессы решают единую задачу, а значит, имеют много общего между собой — они могут работать с одними и теми же данными, использовать один и тот же кодовый сегмент, наделяться одними и теми же правами доступа к ресурсам вычислительной системы. Так, если в примере с сервером баз данных создавать отдельные процессы для каждого запроса, поступающего из сети, то все процессы будут выполнять один и тот же программный код и выполнять поиск в записях, общих для всех процессов файлов данных. А операционная система при таком подходе будет рассматривать эти процессы наравне со всеми остальными процессами и с помощью универсальных механизмов обеспечивать их изоляцию друг от друга. В данном случае все эти достаточно громоздкие механизмы используются явно не по назначению, выполняя не только бесполезную, но и вредную работу, затрудняющую обмен данными между различными частями приложения. Кроме того, на создание каждого процесса ОС тратит определенные системные ресурсы, которые в данном случае неоправданно дублируются — каждому процессу выделяются собственное виртуальное адресное пространство, физическая память, закрепляются устройства ввода-вывода и т. п.

 

Из всего вышеизложенного, следует, что в операционной системе наряду с процессами нужен другой механизм распараллеливания вычислений, который учитывал бы тесные связи между отдельными ветвями вычислений одного и того же приложения. Для этих целей современные ОС предлагают механизм многопоточной обработки (multithreading). При этом вводится новая единица работы — поток выполнения, а понятие «процесс» в значительной степени меняет смысл. Понятию «поток» соответствует последовательный переход процессора от одной команды программы к другой. ОС распределяет процессорное время между потоками. Процессу ОС назначает адресное пространство и набор ресурсов, которые совместно используются всеми его потоками.


 

Создание потоков требует от ОС меньших накладных расходов, чем процессов. В отличие от процессов, которые принадлежат разным, вообще говоря, конкурирующим приложениям, все потоки одного процесса всегда принадлежат одному приложению, поэтому ОС изолирует потоки в гораздо меньшей степени, нежели процессы в традиционной мультипрограммной системе. Все потоки одного процесса используют общие файлы, таймеры, устройства, одну и ту же область оперативной памяти, одно и то же адресное пространство. Это означает, что они разделяют одни и те же глобальные переменные. Поскольку каждый поток может иметь доступ к любому виртуальному адресу процесса, один поток может использовать стек другого потока. Между потоками одного процесса нет полной защиты, потому что, во-первых, это невозможно, а во-вторых, не нужно. Чтобы организовать взаимодействие и обмен данными, потокам вовсе не требуется обращаться к ОС, им достаточно использовать общую память — один поток записывает данные, а другой читает их. С другой стороны, потоки разных процессов по-прежнему хорошо защищены друг от друга.

 

Итак, мультипрограммирование более эффективно на уровне потоков, а не процессов. Каждый поток имеет собственный счетчик команд и стек. Задача, оформленная в виде нескольких потоков в рамках одного процесса, может быть выполнена быстрее за счет псевдопараллельного (или параллельного в мультипроцессорной системе) выполнения ее отдельных частей. Например, если электронная таблица была разработана с учетом возможностей многопоточной обработки, то пользователь может запросить пересчет своего рабочего листа и одновременно продолжать заполнять таблицу. Особенно эффективно можно использовать многопоточность для выполнения распределенных приложений, например многопоточный сервер может параллельно выполнять запросы сразу нескольких клиентов.

 

Использование потоков связано не только со стремлением повысить производительность системы за счет параллельных вычислений, но и с целью создания более читабельных, логичных программ. Введение нескольких потоков выполнения упрощает программирование. Например, в задачах типа «писатель-читатель» один поток выполняет запись в буфер, а другой считывает записи из него. Поскольку они разделяют общий буфер, не стоит их делать отдельными процессами. Другой пример использования потоков — управление сигналами, такими как прерывание с клавиатуры (del или break). Вместо обработки сигнала прерывания один поток назначается для постоянного ожидания поступления сигналов. Таким образом, использование потоков может сократить необходимость в прерываниях пользовательского уровня. В этих примерах не столь важно параллельное выполнение, сколь важна ясность программы.

 

Наибольший эффект от введения многопоточной обработки достигается в мультипроцессорных системах, в которых потоки, в том числе и принадлежащие одному процессу, могут выполняться на разных процессорах действительно параллельно (а не псевдопараллельно).







Date: 2015-08-24; view: 1146; Нарушение авторских прав



mydocx.ru - 2015-2025 year. (0.013 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию