Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Солнечные пятна
Следующий вопрос таков: можем ли мы полностью положиться на наше Солнце? Не может ли произойти нечто нехорошее с Солнцем, пока оно еще находится в главной последовательности? Не может ли произойти нечто нехорошее в близком будущем и без предупреждения, так, что у нас не окажется защитных средств или не хватит времени для их применения, если они у нас будут. Если нет чего‑то страшно неверного в наших убеждениях относительно звездной эволюции, с Солнцем ничего плохого не случится. Как идет дело сейчас, так было и в течение очень длительного времени, и так будет продолжаться еще в течение длительного времени. Всякое изменение будет настолько малым, что окажется несущественным в солнечном масштабе. Но не могут ли изменения, несущественные в солнечном масштабе, оказаться бедственными в масштабе Земли? Конечно, могут. Солнце может слегка икнуть, и для него это будет сущий пустяк, если Солнце рассматривать с расстояния даже самых близких звезд. Воздействие же на Землю такого малого изменения, однако, может быть достаточным для того, чтобы значительно изменить ее свойства, а если ненормальный спазм продлится достаточно долго, это может обернуться для нас настоящей катастрофой. Кроме того, как нам известно, жизнь сама по себе довольно хрупкая вещь в космическом масштабе. Не требуется очень большого изменения температуры, чтобы вскипятить океаны или заморозить их и в обоих случаях сделать жизнь невозможной. Сравнительно небольшого изменения солнечной активности достаточно для того, чтобы создать ту или иную экстремальную ситуацию. И отсюда следует, чтобы продолжалась жизнь, Солнце должно светить лишь с самыми незначительными отклонениями от его обычного состояния. Так как история жизни, насколько мы можем судить, продолжается вот уже больше трех миллиардов лет, у нас есть воодушевляющая уверенность, что Солнце все‑таки надежная звезда. Однако Солнце может быть достаточно стабильным, чтобы допускать существование жизни вообще, и быть достаточно нестабильным, чтобы заставлять ее переживать некоторые ужасные невзгоды. Безусловно, в истории жизни были времена, когда, по‑видимому, происходили биологические катастрофы, и мы не можем быть уверены, что Солнце тут было ни при чем. Об этом мы поговорим позднее. Если ограничиться историческими временами, Солнце представлялось совершенно стабильным, по крайней мере для случайных наблюдателей и для астрономов, менее оснащенных приборами, чем астрономы нашего изощренного времени. Полагать, что так будет продолжаться, значит жить иллюзиями. Один путь разобраться — это наблюдать за другими звездами. Если все остальные звезды совершенно постоянны в яркости, то почему бы нам не допустить, что и наше Солнце тоже такое и никогда не даст нам ни слишком много радиации, ни слишком мало? Тем не менее в действительности несколько звезд, видимых невооруженным глазом, нестабильны по яркости, будучи некоторое время то тусклыми, то довольно яркими. Одна такая звезда — Алголь в созвездии Персея. Ни один астроном древности или средних веков не отмечал ее изменчивости, возможно, исходя из уверенности греков, что небеса неизменны. Существует, однако, косвенное свидетельство, что астрономы знали о ее изменчивости, даже если не любили говорить об этом. Персей обычно изображается в созвездии держащим голову умерщвленной Медузы, демона‑монстра, чьи волосы состоят из живых змей, а роковой быстрый взгляд превращает людей в камень. Алголи отводилась роль этой головы, и поэтому звезду иногда называли «Демоническая звезда». Собственно, само слово «Алголь» является искажением арабского alghul, означающего «вурдалак», «упырь». Испытываешь искушение предположить, что греки были слишком смущены изменчивостью Алголи, чтобы говорить об этом открыто, но намекали на это, сделав ее демоном. Впервые ее изменчивость была открыто отмечена в 1669 году итальянским астрономом Джеминиано Монтанари (1632‑1687). В 1782 году восемнадцатилетний глухонемой голландец английского происхождения Джон Гудрайк (1764‑1786) доказал, что изменчивость Алголи строго регулярна, и предположил, что, по существу, она не изменчива, но у нее есть невидимый компаньон, звезда, которая вращается вокруг нее и периодически частично заслоняет ее. Как оказалось, он был совершенно прав. Однако ранее, в 1596 году, немецкий астроном Давид Фабрициус (1564‑1617) отметил изменчивую звезду, которая была намного более замечательна, чем Алголь. Это была Мира, звезда, которую я упоминал ранее как находящийся поблизости красный гигант. «Мира» от латинского слова, означающего «причина чуда», а оно и состояло в том, что она изменяется по яркости в значительно большей степени, чем Алголь, становясь временами столь тусклой, что оказывается невидимой невооруженным глазом. Мира также обладает намного более длинным и гораздо менее регулярным периодом изменения, чем Алголь. (Опять чувствуешь, что это, должно быть, замечалось и прежде, но, вероятно, намеренно игнорировалось во избежание больших хлопот, связанных с Доказательством.) Мы можем не принимать во внимание такие звезды, как Алголь, которая испытывает затмения, и только кажется, что она меняется по цвету. Этот случай не указывает на какой‑нибудь признак бедственной изменчивости в звезде, подобной Солнцу. Мы можем также не принимать во внимание сверхновые, которые появляются только в конвульсиях звезды, претерпевающей свою окончательную гибель, не принимать и обычные новые, которые являются белыми карликами, уже претерпели гибель и поглощают необычайное количество материи от нормальной звезды‑компаньона. Остаются такие звезды, как Мира и Бетельгейзе, — «подлинно изменяющиеся звезды», то есть звезды, изменяющиеся по излучаемому свету из‑за цикличных изменений в их структуре. Они пульсируют в некоторых случаях регулярно, а в других — нерегулярно, они становятся холоднее, но больше, в расширяющейся части цикла, и горячее, но меньше, в сжимающейся части. Если бы Солнце было такой подлинно изменяющейся звездой, жизнь на Земле была бы невозможна, поскольку разница между испускаемой Солнцем радиацией в различное время его цикла периодически то омывала бы Землю невыносимым теплом, то подвергала бы непереносимому холоду. Можно спорить, сумеют ли люди защитить себя от этих температурных перепадов, но прежде всего кажется невероятным, чтобы жизнь развилась при подобных условиях или чтобы она эволюционировала до периода, когда любые особи окажутся настолько развиты технологически, что сумеют иметь дело с такими изменениями. Конечно, Солнце не такая изменчивая звезда, но не может ли оно стать таким, а мы — вдруг оказаться в мире с температурными крайностями, что превратило бы жизнь в невыносимый кошмар? Это, к счастью, совершенно невероятно. Прежде всего подлинно изменчивых звезд мало. Их примерно 14 000. Даже допуская, что многие из таких звезд остаются незамеченными, потому что слишком далеки, чтобы быть видимыми, или потому, что скрыты за пылевыми облаками, все равно они составляют очень маленький процент от всех звезд. Огромное большинство звезд, видимо, и есть такие стабильные и не изменяющиеся, какими их и считали древние греки. Кроме того, некоторые подлинно изменчивые звезды — это крупные, яркие звезды, находящиеся близ конца своего пребывания в главной последовательности. Другие Мира и Бетельгейзе, уже покинули главную последовательность и, видимо, находятся у порога своей жизни как кандидаты в красные гиганты. Вполне вероятно, что пульсация — это тот вид нестабильности, который указывает на окончание определенной стадии жизни звезды и приближение перехода в какую‑то другую стадию. Солнце — звезда всего лишь среднего возраста, и еще миллиарды лет пройдут, до того как нынешняя стадия подойдет к концу, поэтому, наверное, в течение еще длительного времени нет шансов на то, что оно станет изменчивой звездой. Но даже если так, существуют степени изменчивости, и Солнце может быть или стать изменчивым в очень малой степени и все же причинить нам неприятности. Например, как насчет солнечных пятен? Не может ли их изменяющееся время от времени количество указывать на определенную небольшую изменчивость в солнечной радиации? Как известно, пятна заметно холоднее, чем части солнечной поверхности без пятен. Так не может ли пятнистое Солнце быть холоднее, чем Солнце без пятен? Этот вопрос стал довольно важным в связи с работой немецкого фармацевта Генриха Самюэля Швабе (1789‑1875); астрономия была его хобби. Он мог посвятить себя телескопу только в дневные часы, так что он взялся наблюдать за окружением Солнца, чтобы обнаружить неизвестную планету, которая, как некоторые считали, может двигаться по орбите вокруг Солнца внутри орбиты Меркурия. Если это было так, она вполне могла периодически пересекать солнечный диск, что и пытался установить Швабе. Он начал свой поиск в 1825 году и при наблюдении за диском Солнца не мог не заметить солнечных пятен. Спустя некоторое время он забыл о планете и принялся зарисовывать солнечные пятна. В течение семнадцати лет он делал это в каждый солнечный день. К 1843 году он смог объявить, что солнечные пятна прибывают и убывают с цикличностью в десять лет. В 1908 году американский астроном Джордж Эллери Хэйл (1868‑1938) обнаружил, что солнечные пятна обладают сильным магнитным полем. Направленность магнитного поля в определенном цикле постоянна, в следующем цикле она меняется на обратную. Если принять во внимание магнитные поля, то время от одного максимума солнечных пятен с полем одной направленности до следующего максимума с полем той же направленности составляет двадцать лет. Очевидно, магнитное поле Солнца по некоторым причинам то усиливается, то уменьшается, и солнечные пятна связаны с этими переменами. Так же и с другими эффектами. Существуют, например, «солнечные вспышки», неожиданные временные озарения то тут, то там на солнечной поверхности, что, видимо, связано с локальным усилением магнитного поля. Они становятся более частыми, когда возрастает количество солнечных пятен, поскольку и те и другие связаны с магнитными полями. Поэтому при максимуме солнечных пятен мы говорим об «активном Солнце», а при минимуме солнечных пятен о «спокойном Солнце» (Тепло вспышек может более чем компенсировать холодность пятен, так что Солнце с пятнами может быть теплее, чем без пятен). Кроме того, Солнце постоянно испускает потоки атомных ядер (главным образом водородных ядер, которые являются простыми протонами), которые движутся от Солнца с большой скоростью во всех направлениях. В 1958 году американский астроном Юджин Норман Паркер (р. 1927) назвал их «солнечным ветром». Солнечный ветер достигает Земли, проходит мимо и взаимодействует с верхней атмосферой, вызывая разнообразные эффекты, такие, например, как полярное сияние. Солнечные вспышки изрыгают огромное количество протонов и временно подкрепляют солнечный ветер. Таким образом, на Землю гораздо сильнее воздействует увеличение или снижение солнечной активности, чем любые простые изменения температуры, связанные с циклом солнечных пятен. Какие бы ни возникали эффекты на Земле, циклы солнечных пятен определенно не вмешиваются в жизнь каким‑либо явным образом (Как теперь выясняется, это не совсем так. Во время магнитных бурь плотность атмосферного газа на высотах, где летают искусственные спутники Земли, сильно (в десять и более раз) возрастает, и потому изменяются орбиты спутников. Так, в 1989 году четыре навигационных спутника США серии «Транзит» были выключены на срок от 2‑3 дней до недели. А в январе 1997 года при таких же обстоятельствах был потерян спутник «Телестар» ценой 132 миллиона долларов. В 80‑х годах в результате магнитных бурь нарушалась в различных местах работа высоковольтных линий передач, ущерб от этого исчислялся миллиардами долларов. Поток энергетических частиц, идущих от Солнца, разрушает хрупкие элементы солнечных батарей, проникает внутрь космических аппаратов, выводя из строя сложные приборы, создавая для космонавтов опасность лучевой болезни.). Вопрос, тем не менее, в том, не может ли цикл солнечных пятен отбиться от рук и не может ли Солнце начать резко двигаться, так сказать, взад‑вперед, настолько, что вызовет катастрофу? Мы могли бы доказывать, что, насколько нам известно, с ним такого никогда не происходило в прошлом, поэтому не должно происходить и в будущем. Наша уверенность в этом доводе была бы сильнее, если бы цикл солнечных пятен был абсолютно регулярным. Но это не так. Например, самое короткое время, зафиксированное между максимумами солнечных пятен, — 7 лет, самое длинное — 17.(Теперь средней продолжительностью цикла считают 11 лет.) Кроме того, и интенсивность максимума непостоянна. Степень пятнистости Солнца измеряется «цюрихским числом солнечных пятен». Засчитывается 1 за каждое отдельное пятно и 10 за каждую группу солнечных пятен, и все умножается на число, которое меняется в соответствии с используемыми приборами и условиями наблюдения. Если цюрихское число определять из года в год, то оказывается, что существует максимум с небольшими величинами, например, 50 в начале семнадцатого и в начале восемнадцатого веков. С другой стороны, в 1959 году максимум достиг самого большого значения за все время — 200. Естественно, число солнечных пятен регистрировалось с большой тщательностью только после сообщения Швабе в 1843 году, так что цифры, которые мы использовали до этого времени, начиная с 1700 года, не вполне надежны, а отчеты с первого века после открытия Галилея обычно отбрасывались совсем, как слишком отрывочные. Тем не менее в 1893 году британский астроном Эдвард Уолтер Мондер (1851‑1928), изучая старые сообщения, был поражен, увидев, что наблюдения за солнечной поверхностью, которые производились между 1645 и 1715 годами, просто умалчивали о солнечных пятнах. Общее количество пятен, упомянутых за этот семидесятилетний период, было меньше, чем их количество по сообщениям любого нынешнего года. Какое‑то время находка Мондера игнорировалась: легко было предположить, что данные семнадцатого века были слишком неполными и наивными, чтобы придавать им значение, но недавнее исследование подтвердило открытие Мондера, и период с 1645 по 1715 год называют теперь «минимум Мондера». В это время в сообщениях отсутствовали не только солнечные пятна, но почти пропали и сияния (которые обычно сопутствуют максимуму солнечных пятен, когда языки вспышек полыхают по всему Солнцу). Более того, форма короны во время полных затмений Солнца, судя по описаниям и рисункам того периода, была характерна для ее вида при минимуме солнечных пятен. Очевидные изменения магнитного поля Солнца в соответствии с циклами солнечных пятен косвенно воздействуют на количество углерода‑14 (радиоактивный изотоп углерода) в атмосфере. Углерод‑14 образуется космическими лучами, он проникает в атмосферу Земли. Когда магнитное поле Солнца усиливается во время максимума солнечных пятен, это помогает защитить Землю от притока космических лучей. При минимуме солнечных пятен магнитное поле ослабевает, и космические лучи не отклоняются. Отсюда следует, что углерод‑14 при минимуме солнечных пятен находится в атмосфере в наибольших количествах, при максимуме солнечных пятен — в наименьших. Углерод (включая углерод‑14) поглощается растительностью из атмосферы в форме двуокиси углерода. Углерод (включая углерод‑14) включается в молекулы древесины деревьев. К счастью, углерод‑14 может быть обнаружен, и его количество определено с большой точностью. Если исследуются очень старые деревья, углерод‑14 может быть обнаружен в каждом годовом кольце, и можно год за годом установить, как изменяется его содержание. Оно высокое при минимуме солнечных пятен и низкое — при максимуме. И оказывается, он был высок при минимуме Мондера. Таким путем были обнаружены и другие периоды солнечной неактивности, некоторые продолжались всего лишь 50 лет, а другие достигали по длительности нескольких столетий. Около дюжины их было зафиксировано в исторические времена, начиная с 3000 года до н.э. Короче, представляется, что существуют более продолжительные циклы солнечных пятен. Существуют расширенные минимумы очень малой активности, рассыпанные между низкой и высокой активностью благодаря расширенным периодам колебаний. Нам случилось пребывать в одном из последних периодов после 1715 года (Началом очередного нового цикла активного Солнца считают 1997 год, и по прогнозам цикл обещает быть особенно сильным). Какое воздействие оказывает на Землю такой более продолжительный цикл солнечных пятен? Дюжина минимумов Мондера, которые имели место в исторические времена, видимо, не вмешивались катастрофически в человеческое существование. На этом основании можно полагать, что не следует бояться повторения такого расширенного минимума. Что же до остального, мы на самом деле столь многого не знаем о Солнце, в то время как думаем, что знаем. Мы не совсем понимаем, что служит причиной десятилетнего цикла солнечных пятен, который сейчас существует, и мы, конечно, не понимаем, что вызывает минимум Мондера. И раз мы не понимаем подобных вещей, можем ли мы быть уверены, что Солнце в какое‑то время без предупреждения не выйдет из‑под контроля?
Date: 2015-08-24; view: 508; Нарушение авторских прав |