Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Белки обладают целым рядом замечательных свойств





Ферменты. Большинство реакций ассимиляции и диссимиляции в организме идут при участии ферментов √ белков являющимися биологическими катализаторами. В настоящее время известно существование около 700 ферментов. Все они простые или сложные белки. Последние состоят из белка и кофермента. Коферменты √ это различные физиологически активные вещества или их производные √ нуклеотиды, флавины и т. д.

Ферменты отличаются чрезвычайно высокой активностью, которая в значительной степени зависит от рН среды. Для ферментов наиболее характерна их специфичность. Каждый фермент способен регулировать, лишь строго определенный тип реакции.

Таким образом, ферменты выполняют функцию ускорителей и регуляторов почти всех биохимических процессов в клетке и в организме.

Гормоны.

Гормоны √ секреты желез внутренней секреции. Гормоны обеспечивают в клетке синтез определенных ферментов, активизируют или тормозят их работу. Таким образом они ускоряют рост организма и деление клеток, усиливают работу мышц, регулируют всасывание и выделение воды и солей. Гормональная система вместе с нервной системой обеспечивает деятельность организма как единого целого, через специальное действие гормонов

Витамины. Их биологическая роль.

Витамины √ это органические вещества образующиеся в животном организме или поступающие с пищей в очень незначительных количествах, но абсолютно необходимых для нормального обмена веществ. Недостаток витаминов приводит к заболеванию гипо- и авитаминозам.

В настоящее время известно более 20 витаминов. Это витамины группы В, витамины Е, А, К, С, РР и др.

Биологическая роль витаминов заключается в том, что при их отсутствии или недостатке нарушается в работа определенных ферментов, нарушаются биохимические реакции и нормальная деятельность клеток.

Биосинтез белков. Генетический код.

Биосинтез белков, а точнее полипептидных цепей, осуществляется на рибосомах, но это лишь конечный этап сложного процесса.

Информация о структуре полипептидной цепи содержится в ДНК. Отрезок ДНК, несущий информацию о полипептидной цепи это ген. Когда это стало известно, стало ясно, Что последовательность нуклеотидов ДНК должна определять аминокислотную последовательность полипептидной цепи. Эта зависимость между основаниями и аминокислотами известна под названием генетического кода. Как известно молекула ДНК построена из нуклеотидов четырех типов в состав которых входят одно из четырех оснований: аденин (А), гуанин (Г), тимин (Т), цитозин (Ц). Нуклеотиды соединены в полинуклеотидную цепь. С помощью этого четырех буквенного алфавита записаны инструкции для синтеза потенциально бесконечного числа белковых молекул. Если бы одно основание определяло положение одной аминокислоты, то цепь содержала только четыре аминокислоты. Если бы каждая аминокислота кодировалась двумя основаниями, то с помощью такого кода можно было бы зашифровать 16 аминокислот. Только код, состоящий из троек оснований (триплетный код), может обеспечить включение в полипептидную цепь всех 20 аминокислот. В такой код входят 64 разных триплета. В настоящее время генетический код известен для всех 20 аминокислот.

Главные черты генетического кода можно сформулировать следующим образом.

1. Кодом, определяющим включение аминокислоты в полипептидную цепь, служит триплет оснований в полипептидной цепи ДНК.

2. Код универсален: одни и те же триплеты кодируют одни и те же аминокислоты у разных микроорганизмов.

3. Код является вырожденным: данная аминокислота может кодироваться более чем одним триплетом. Например аминокислота лейцин кодируется триплетами ГАА, ГАГ, ГАТ, ГАЦ.

4. Код перекрывающийся: например последовательность нуклеотидов АААЦААТТА считывается только как ААА/ЦАА/ТТА. Следует отметить, что существуют триплеты, которые не кодируют аминокислоту. Функция некоторых таких триплетов установлена. Это стартовые кодоны, сбросовые кодоны и пр. Функции других требуют расшифровки.

Последовательность оснований в одном гене, которая несет информацию о полипептидной цепи, ⌠переписывается в комплиментарную ее последовательность оснований информационной или матричной РНК. Этот процесс называется транскрипцией, Молекула И-РНК образуется в результате связывания друг с другом свободных рибонуклеотидов под действием РНК √ лимеразы в соответствии с правилами спаривания оснований ДНК и РНК (А-У, Г-Ц, Т-А, Ц-Г). Синтезированные молекулы И-РНК, несущие генетическую информацию, выходят из ядра и направляются к рибосомам. Здесь происходит процесс названный трансляцией √ последовательность триплетов оснований в молекуле И-РНК переводится в специфическую последовательность аминокислот в полипептидной цепи.


К концу молекулы ДНК прикрепляется несколько рибосом образующих полисому. Вся эта структура представляет собой последовательно соединенные рибосомы. При этом, на одной молекуле И-РНК, может осуществляться синтез нескольких полипептидных цепей. Каждая рибосома состоит из двух субъединиц √ малой и большой. И-РНК Присоединяется к поверхности малой субъединицы в присутствии ионов магния. При этом два ее первых транслируемых кодона оказываются обращенными к большой субъединице рибосомы. Первый кодон связывает молекулу т_рнк содержащую комплиментарный ему антикодон и несущую первую аминокислоту синтезируемого полипептида. Затем второй антикодон присоединяет комплекс аминокислота-т-РНК, содержащий антикодон комплиментарный этому кодону.

Функция рибосомы заключается в том, чтобы удерживать в нужном положении и-РНК, т-РНК и белковые факторы, участвующие в процессе трансляции, до тех пор пока между соседними аминокислотами не образуется пептидная связь.

Как только новая аминокислота присоединилась к растущей полипептидной цепи, рибосома перемещается по нити и-РНК с тем, чтобы поставить на надлежащие место следующий кодон. Молекула т-РНК, которая была связана перед этим с полипептидной цепью, теперь освободившись от аминокислоты, покидает рибосому и возвращается в основное вещество цитоплазмы, чтобы образовать новый комплекс аминокислота-т-РНК. Такое последовательное ⌠считывание рибосомой заключенного в и-РНК ⌠текста продолжается до тех пор, пока процесс не доходит до одного из стоп-кодонов. Такими кодонами являются триплеты УАА, УАГ или УГА. На этом этапе полипептидная цепь, первичная структуракоторой была закодирована на участке ДНК √ гене, покидает рибосому и трансляция завершена.

После того как полипептидные цепи отделились от рибосомы, они могут приобретать свойственную им вторичную, третичную или четвертичную структуры.

В заключении следует отметить, что весь процесс синтеза белка в клетке идет с участием ферментов. Они обеспечивают синтез и-РНК, ⌠захват аминокислот т-РНК, соединение аминокислот в полипептидную цепь, формирование вторичной, третичной, четвертичной структуры. Именно из-заучастия ферментов синтез белка называют биосинтезом. Для обеспечения всех стадий синтеза белка, используется энергия высвобождающаяся при расщеплении АТФ.

Регуляция транскрипции и трансляции (синтеза белков) у бактерий и высших организмов.

Каждая клетка содержит полный набор молекул ДНК. С информацией о строении всех полипептидных цепей, какие только могут быть синтезированы в данном организме. Однако в определенной клетке реализуется только часть этой информации, Как же осуществляется регуляция этого процесса?

В настоящее время выяснены только отдельные механизмы синтеза белков. Большинство белков-ферментов образуется только в присутствии веществ-субстратов, на которые они действуют. Строение белка-фермента закодировано в соответствующем гене (структурный ген). Рядом со структурным геном находится другой ген-оператор. Кроме того в клетке присутствует особое вещество √ репрессор, способное взаимодействовать как с геном-оператором, так и с веществом-субстратом. Синтез репрессора регулируется геном-регулятором.


Присоединившись к гену-оператору, репрессор препятствует нормальному функционированию соседнего с ним структурного гена. Однако, соединившись с субстратом, репрессор утрачивает способность соединяться с геном-оператором и и препятствовать синтезу и-РНК. Образованием самих репрессоров управляют особые гены-регуляторы, функционирование которых управляется репрессорами второго порядка. Вот почему не все, а только специфические клетки реагируют на данный субстрат синтезом соответствующего фермента.

На этом, однако, иерархия репрессорных механизмов не прерывается имеются репрессоры и более высоких порядков, что говорит об удивительной сложности связанного с запуском гена в клетке.

Считывание заключенного в и-РНК ⌠текста прекращается когда этот процесс доходит до стоп-кодона.

Автотрофные (аутотрофные) и гетеротрофные организмы.

Автотрофные организмы синтезируют из неорганических веществ органические с использованием энергии Солнца или энергии, освобождающейся при химических реакциях. Первые называются гелиотрофами, вторые √ хемотрофами. К автотрофным организмам относятся растения и некоторые бактерии.

Гетеротрофные организмы используют вещества производимые другими видами. К гетеротрофам относятся все животные, паразитические растения, большинство бактерий, грибы.

Различают два типа гетеротрофного питания: сапрофитное √ питание органическими веществами, образующимися при разложении тел организмов; паразитное √ питание органическими вест вами вырабатываемыми живыми организмами.

В природе встречается и смешанный тип питания, который характерен для некоторых бактерий, водорослей и простейших. Такие организмы органические вещества своего тела могут синтезировать из готовых органических веществ и из неорганических.

Объем веществ в клетке.

Объем веществ это процесс последовательного потребления, превращения, использования, накопления потери веществ и энергии позволяющий клетке самосохраняться, расти, развиваться и размножаться. Обмен веществ состоит из непрерывно протекающих процессов ассимиляции и диссимиляции.

Пластический обмен в клетке.

Пластический обмен в клетке это совокупность реакций ассимиляции, т. е. превращение определенных веществ внутри клетки с момента их поступления до образования конечных продуктов √ белков, глюкозы, жиров и пр. Для каждой группы живых организмов характерен особый, генетически закрепленный тип пластического обмена.

Пластический обмен у животных. Животные являются гетеротрофными организмами, т. е. они питаются пищей содержащей готовые органические вещества. В кишечном тракте или кишечной полости они расщепляются: белки до аминокислот, углеводы до моноз, жиры до жирных кислот и глицерина. Продукты расщепления проникают в кровь и непосредственно в клетки тела. В первом случае продукты расщепления опять таки оказываются в клетках организма. В клетках происходит синтез веществ характерный уже для данной клетки, т. е. формируется специфический набор веществ. Из реакций пластического обмена простейшими являются реакции обеспечивающие синтез белков. Синтез белка происходит на рибосомах, согласно информации о структуре белка содержащийся в ДНК, из аминокислот поступивших в клетку. Синтез ди-, полисахаридов идет из моноз в аппарате Гольджи. Из глицерина и жирных кислот синтезируются жиры. Все реакции синтеза идут с участием ферментов и нуждаются в затрате энергии, энергию для реакций ассимиляции дает АТФ.


Пластический обмен в клетках растений имеет много общего с пластическим обменом в клетках животных, но обладает определенной специфичной связанной со способом питания растений. Растения это аутотрофные организмы. Растительные клетки, содержащие хлоропласты, способны синтезировать органические вещества из простых неорганических соединений с использованием энергии света. Этот процесс известный под названием фотосинтеза позволяет растениям с участием хлорофила из шести молекул углекислого газа и шести молекул воды получать одну молекулу глюкозы и шесть молекул кислорода. В дальнейшем преобразование глюкозы идет по известному нам пути.

Метаболиты возникающие у растений в процессе обмена веществ дают начало составным элементам белков √ аминокислотам и жиров √ глицерину и жирным кислотам. Синтез белка у растений идет как и животных на рибосомах, а синтез жиров на цитоплазме. Все реакции пластического обмена у растений идут с участием ферментов и АТФ. В результате пластического обмена образуются вещества обеспечивающие рост и развитие клетки.

Хемосинтез.

Каждый организм для поддержания жизни и осуществления процессов, совокупность которых составляет обмен веществ, нуждается в постоянном притоке энергии.

Процесс образования некоторыми микроорганизмами органических веществ, из углекислого газа за счет энергии, получаемой при окислении неорганических соединений (аммиака, водорода, соединений серы, закисного железа) называется хемосинтезом.

В зависимости от минеральных соединений, в результате окисления которых микроорганизмы, а это в основном бактерии, способны получать энергию хемоавтотрофы делятся на нитрифицирующие, водородные, серобактерии, железобактерии.

Нитрофицирующие бактерии окисляют аммиак до азотной кислоты. Этот процесс идет в две фазы. Сначала идет окисление аммиака до азотной кислоты:

2NH + 3O = 2HNO + 2HO + 660 кДж.

Затем азотистая кислота превращается в азотную:

2HNO + O = 2HNO + 158 кДж.

В сумме выделяется 818 кДж, которые используются для утилизации углекислого газа.

У железобактерий окисление двухвалентного железа происходит согласно уравнению

Поскольку реакция сопровождается малым выходом энергии (46,2*10 Дж/г окисленного железа), то для поддержания роста бактериям приходится окислять весма большое количество железа.

При окислении одной молекулы сероводорода выделяется √ 17,2*10 Дж., одной молекулы серы √ 49,8*10 Дж., а одной молекулы - 88,6*10 Дж.

Процесс хемосинтеза был открыт в 1887 году С.Н. Виноградским. Это открытие не только пролило свет на особенности обмена веществ у бактерий, но и позволило определить значимость бактерий √ хемоавтотрофоф. Особенно это касается азотфиксирующих бактерий, которые недоступный растениям азот превращают в аммиак, чем способствуют повышению плодородия почвы. Стал понятен и процесс участия бактерий в круговороте веществ в природе.

Размножение организмов.

Формы размножения организмов.

Способность размножаться, т.е. производить новое поколение того же вида, одна из основных особенностей живых организмов.

Существует два основных типа размножения √ бесполое и половое.

Бесполое размножение.

При бесполом размножении потомки происходят от одного организма. Идентичное потомство происходящее от оной родительской особи, называется клоном. Члены одного клона могут быть генетически различными только в случае возникновения случайных мутаций. Бесполое размножение не встречается только у высших животных. Однако известно, что клонирование было успешно проведено для некоторых видов и высших животных √ лягушек, овец, коров.

В научной литературе выделяют несколько форм бесполого размножения.

1. Деление. Делением размножаются одноклеточные организмы: каждая особь делиться на две или большее число дочерних клеток, идентичной родительской клетке. Так размножаются бактерии, амеба, эвглена, хламидомонада и др.

2. Образование спор. Спора √ это одноклеточная репродуктивная структура. Образование спор характерно для всех растений и грибов.

3. Почкование. Почкованием называют форму бесполого размножения, при которой новая особь образуется в виде выроста на теле родительской особи, а затем отделяется от не и превращается в самостоятельный организм. Почкование встречается у кишечнополостных и у дрожжей.

4. Размножение фрагментами. Фрагментацией называют разделение особи на несколько частей, которая растет и образует новую особь. Так размножается спирогира, лишайники и некоторые виды червей.

5. Вегетативное размножение. Это форма бесполого размножения, при которой от растения отделяется относительно большая, обычно дифференцированная, часть и развивается в самостоятельное растение. Это размножение луковицами, клубнями, корневищами и пр. Вегетативное размножение подробно описано в разделе ⌠Ботаника. (Ботаника. Пособие для поступающих в вузы. Составитель М. А. Галкин).

Партеногенез.

Одной из форм полового размножения является партеногенез √ при котором развитие зародыша происходит из неоплодотворенной яйцеклетки. Партеногенез распространен среди насекомых (тли, пчелы), разнообразных коловраток, простейших, как исключение встречается у некоторых ящериц.

Существует два типа партеногенеза √ гаплоидный и диплоидный. У муравьев в результате гаплоидного партеногенеза в в пределах сообщества, возникают различные касты организмов √ солдаты, уборщики и пр. У пчел из неоплодотворенной яйцеклетки появляются трутни, у которых сперматозоиды образуются митозом. У тлей происходит диплоидный партеногенез. У них в период образования клеток в анафазе √ не расходяться гомологичные хромосомы √ и сама яйцеклетка оказывается диплоидной при трех ⌠стерильных полярных тельцах. У растений партеногенез довольно типичное явление. Здесь он носит название апомиксиса. В результате ⌠стимуляции в яйцеклетке происходит удвоение хромосом. Из диплоидной клетки развивается нормальный зародыш.

Здоровый образ жизни √ залог долголетия.

Все биологические системы характеризуются большей или меньшей способностью к саморегуляции. Саморегуляция √ состояние динамического постоянства природной системы направлена на максимальное ограничение воздействий внешней и внутренней среды, сохраненья относительного постоянства структуры и функций организма.

Кроме того, влияние различных факторов на организм сглаживается в результате формирования у организмов сложной системы физиологических реакций на временные √ сезонные и в особенности на кратковременные √ суточные изменения в факторах внешней среды, получившие отображение в биологических часах. Примером может служить четкое сохранение цветения у растений в определенное время суток.

Особым видом приспособления организма к изменяющимся условиям является анабиоз √ временное состояние организма, при котором жизненные процессы настолько замедленны что практически отсутствуют все видимые проявления жизни. Возможность впадать в анабиоз способствует выживанию организмов в резко неблагоприятных условиях. Анабиоз распространен у грибов, микроорганизмов, растений, животных. При наступлении благоприятных условий организмы впавшие в анабиоз возвращаются к активной жизни. Вспомним высохших коловраток, цисты, споры и пр.

Все приспособления организмов к изменяющимся условиям являются продуктом деятельности естественного отбора. Естественный отбор определил и амплитуду действия факторов среды, которая позволяет организму нормально существовать.

Эволюционный процесс и его закономерности.

Предпосылки возникновения эволюционной теории Ч. Дарвина.

Появлению эволюционной теории Ч. Дарвина, изложенной им в книге ⌠Происхождение видов, предшествовало длительное развитие биологии, ее функциональных и прикладных дисциплин. Еще за долго до Ч. Дарвина предпринимались попытки объяснить очевидное разнообразие организмов, Выдвигались различные эволюционные гипотезы, которые могли бы объяснить сходство между животными организмами. Здесь следует упомянуть Аристотеля, который еще в 4 веке до н. э. Сформулировал теорию непрерывного и постепенного развития живого из неживой материи, создал представление о лестнице природы. В конце 18 века Джон Рей создал концепцию вида. А в 1771-78 гг. К. Линней уже предложил систему видов растений. Своему дальнейшему развитию биология обязана именно этому ученому.

Работы К. Линнея.

В период расцвета деятельности К. Линнея, который попадает на середину 18 века в биологии господствовало метафизическое представление о природе, основанное на неизменчивости и изначальной целесообразности.

К. Линней имел под рукой громадные коллекции растений и приступил к их систематизации. Опираясь на учение Д. Рея о виде он начал группировать растения в объеме этой категории. В этот период деятельности К. Линней создает язык ботаники: определяет сущность признака и группирует признаки в свойства, создавая сквозные диагнозы - описание видов. К. Линней узаконил бинарную номенклатуру вида. Каждый вид стал именоваться двумя словами на латинском языке. Первое обозначает родовую принадлежность, второе является видовым эпитетом. Описания видов выполнялись также на латинском языке. Это позволило сделать доступными все описания для ученных всех стран, т. к. латинский язык изучался во всех университетах. Выдающимся достижением К. Линнея стало создание системы растений и разработка систематических категорий. На основе строения репродуктивных органов К. Линней объединил все известные растения в классы. Первые 12 классов выделены по количеству тычинок: класс1 √ однотычиночные, класс 2 √ двуиычиночные и т. д. В 14 класс были включены растения не имеющие цветков. Эти растения он назвал тайнобрачными. Классы К. Линней поделил на семейства, основываясь на строении цветка и других органов. От к. Линнея идут семейства как сложноцветные, зонтичные, крестоцветные и др. Семейства К. Линней поделил на роды. Род К. Линней считал реально существующей категорией созданной по отдельности творцом. Виды он считал вариантами родов, развившимся из исходного предка. Таким образом на низших уровнях К. Линней признавал наличие эволюционного процесса, что остается незамеченным в настоящее время некоторыми авторами учебников и научно-популярных публикаций.

Значение трудов К. Линнея огромно: Он узаконил бинарную номенклатуру, ввел стандартные описания видов, предложил систему таксономических единиц: вид, род, семейство, класс, отряд. И главное создал системы растений и животных по своей по своей научно обоснованности превосходящие все существующие до него системы. Их называют искусственными, из-за малого количества используемых признаков, но именно системы К. Линнея позволили говорить о многообразии видов и их сходстве. Простота систем привлекла в биологию многих исследователей, дала стимул к описанию новых видов, вывела биологию на новую ступень развития. Биология начала объяснять живое, но не только его описывать.

Основные положения эволюционной теории Ч. Дарвина.

Теория эволюции путем естественного отбора была сформулирована Ч. Дарвиным в 1839 году. В полном объеме эволюционные взгляды Ч. Дарвина изложены в книге ⌠Происхождение видов путем естественного отбора, или сохранение благоприятствуемых пород в борьбе за жизнь.

Уже само название книги говорит о том, что Дарвин не ставил перед собой цель доказать существование эволюции, на наличие которой еще указывал Конфуций. В период создания книги в существовании эволюции уже никто не сомневался. Основная заслуга Ч. Дарвина заключается в том, что он объяснил как эволюция может происходить.

Путешествие на корабле ⌠Бигль позволило Дарвину собрать множество данных об изменчивости организмов, которые убедили его в том, что виды нельзя считать неизменными. Возвратившись в Англию Ч. Дарвин занялся практикой разведения голубей и других домашних животных, что привело его к концепции искусственного отбора как метода выведения пород домашних животных и сортов культурных растений. Отбирая нужные ему уклонения, человек доводя эти уклонения до нужных требований создавал ему нужные породы и сорта.

Движущими силами этого процесса по Ч. Дарвину явились наследственная изменчивость и производимый человеком отбор.

Однако Ч. Дарвину надо было решить проблему действия отбора в природных условиях. На механизм действия отбора Ч. Дарвина подтолкнули идеи изложенные в 1778 году Т, Мальтусом в труде ⌠Трактат о народонаселении. Мальтус ярко описал ситуацию к которой мог бы привести рост населения, если бы он ничем не сдерживался. Дарвин перенес рассуждения Мальтуса на другие организмы и обратил внимание на такие факторы: несмотря навысокий репродуктивный потенциал численность популяции остается постоянной. Сопоставляя огромное количество сведений, он пришел к выводу, что в условиях жесткой конкуренции между членами популяции любые изменения, благоприятные в данных условиях, повышали бы способность особи размножаться и оставлять после себя плодовитое потомство, а неблагоприятные изменения, очевидно, невыгодны, и у обладающих ими организмов шансы на успешное размножение понижаются. Все это послужило основой для определения движущих сил (фактров0 эволюции, которыми по Дарвину является изменчивость, наследственность, борьба за существование, естественный отбор.

В сущности, основной смысл эволюционной теории Ч. Дарвина заключается в том, что эволюция происходит на основе возникновения наследуемых изменений, взвешивания их борьбой за существование и отбора изменений, позволяющих организмам победить в интенсивной конкурентной борьбе. Результатом эволюции по Ч. Дарвину является возникновение новых видов, что приводит к разнообразию флоры и фауны.

Движущиеся силы (факторы) эволюции.

Движущимися силами в эволюции являются: наследственность, изменчивость, борьба за существование, естественный отбор.

Наследственность.

Наследственность- свойство всех живых организмов сохранять и передавать признаки и свойства от предков к потомству. Во времена Ч. Дарвина природа этого явления была не известна. Дарвин, как и, предполагал наличие наследственных факторов. Критика этих высказываний со стороны оппонентов заставила Дарвина отказаться от взглядов на место расположения факторов, но сама идея наличия материальных факторов наследственности пронизывает все его учение. Суть явления стала понятна после разработки Т. Морганом хромосомной теории. Когда же была расшифрована и понята структура гена, механизм наследственности стал совсем ясным. Основан он на следующих факторах: признаки организма (фенотип) определяются генотипом и средой (норма реакции); признаки организма определяются набором белков, которые формируются из полипептидных цепей, синтезирующихся на рибосомах, информация о структуре синтезируемой полипептидной цепи содержится на и-РНК, и-РНК получает эту информацию в период матричного синтеза на участке ДНК, который является геном; гены передаются от родителей к детям и являются материальной основой наследственности. В интеркинезе происходит удвоение ДНК, а отсюда и удвоение генов. В период образование половых клеток происходит редукция числа хромосом, а при оплодотворении в зиготе объединяются женские и мужские хромосомы. Формирование зародыша и организма происходит под влиянием генов как материнского и отцовского организма. Наследование признаков происходит в соответствии с законами наследственности Г. Менделя или по принципу промежуточного характера наследования признаков. Наследуются при этом как дискретные, так и мутированные гены.

Таким образом, сама наследственность выступает с одной стороны как фактор сохраняющий уже устоявшиеся признаки, с другой стороны обеспечивает вхождение в структуру организма новых элементов.

Борьба за существование.

В основе дарвиновской теории естественного отбора лежит борьба за существование, с необходимостью вытекающей из безграничного стремления организмов к размножению. Это стремление всегда выражается в геометрических прогрессиях.

Дарвин ссылается при этом на Мальтуса. Однако задолго до Мальтуса биологи знали об этом явлении. Да и наблюдения самого Дарвина подтверждали способность живых существ к потенциальной интенсивности размножения. Еще К. Линней указывал, что одна мясная муха при посредстве своего потомства могла бы за несколько дней до костей труп лошади.

Даже медленно размножающиеся слоны, по подсчету Ч. Дарвина, овладеть всей сушей, если бы для этого были бы все условия. По Дарвину от одной пары слонов за 740 лет получилось бы около 19 миллионов особей.

Почему же так различаются потенциальная и реальная рождаемость?

Дарвин отвечает и на этот вопрос. Он пишет, что настоящее значение многочисленности яиц или семян заключается в том, чтобы покрыть их значительную убыль, вызываемую истреблением в каком-нибудь поколении жизни, т. е. размножение наталкивается на сопротивление среды. На основе анализа этого явления Ч. Дарвин вводит понятие ⌠борьба за существование.

⌠Понятие борьба за существование может иметь смысл и оправдание только в дарвиновском широком ⌠метафорическом понимании: ⌠включая сюда зависимость одного существа от другого, а также включая (что еще важнее) не только жизнь одной особи, но и успех ее в оставлении после себя потомства. Дарвин пишет: ⌠Про двух животных из ряда львов, В период голода, можно совершенно верно сказать, что они борются друг с другом за пищу и жизнь. НО про растение на окраине пустыни также говорят, что оно ведет борьбу за жизнь против засухи, хотя правильнее было бы сказать, что оно зависит от влажности. Про растение, ежегодно производящее тысячи семян, из которых в среднем вырастает лишь одно, еще вернее можно сказать, что оно борется с растениями того же рода и других, уже покрывающих почву┘во всех этих знаниях┘ я ради удобства прибегаю к общему термину борьба за существование.

Текст ⌠Происхождение видов подтверждает разнообразие форм борьбы за существование, но вместе с тем показывает, что во всех этих формах присутствует элемент соревнования или конкуренции.

Сам Ч. Дарвин ни каких форм борьбы за существование не выделял. Такие попытки делали Л. Морган, Л, Плате. В отечественную литературу понятие о формах борьбы за существование ввел К. А. Тимирязев. Следуя этим авторам обычно различают: 1) внутривидовую борьбу с себе подобными за пищу и размножение; 2) межвидовую борьбу с другими организмами (с хищниками, паразитами, бактериальными болезнями); 3) конституциональную борьбу с факторами неорганической среды.

Внутривидовая борьба идет на условиях жесткой конкуренции, так как особи одного вида требуют одинаковых условий существования. На первое место выступает роль самого организма и его индивидуальных особенностей. Отмечается значение его средств защиты, его активность, его стремление к размножению.

Борьба за существование на уровне вида имеет явно активный характер, и ее интенсивность увеличивается с увеличением плотности населения.

Организмы соревнуются между собой в борьбе за пищу, за самку, за зону охоты, а так же в средствах защиты от неблагоприятных влияний климата, в охране потомства.

Ухудшение кормовых условий, высокая плотность населения и т. д., позволяют выжить наиболее конкурентоспособным. В качестве примера внутривидовой борьбы можно привести ситуацию в стаде диких оленей. Увеличение численности особей приводит к повышению плотности популяции. В популяции увеличивается количество самцов. Увеличение плотности популяции приводит к нехватке корма, возникновению эпидемий, борьбе самцов за самку и т. д. Все это приводит к гибели особей и снижению численности популяции. Выживают более сильные.

Таким образом, внутривидовая борьба способствует совершенствованию вида, появлению адаптаций к среде обитания, к факторам, вызывающим эту борьбу.

Межвидовая борьба происходит между особями и популяциями разных видов, т. е. идет борьба с хищниками, с паразитами и патогенными микроорганизмами. Такая борьба ведет к переживанию особей, наиболее вооруженных активными или пассивными средствами защиты против хищников и паразитов, а так же переживанию особей наиболее иммунных к болезням.

Зачастую межвидовая борьба идет в одном направлении. Классический пример это взаимоотношение зайцев и волков. Два зайца убегают от волка. В один момент они разбегаются и волк остается ни с чем. Межвидовая борьба способствует регулировки численности популяций, выбраковки больных или слабых организмов.

Борьба с факторами неорганической среды заставляет растения приспосабливаться к новым условиям существования, толкает их к увеличению плодовитости. С другой стороны определяют приуроченность вида или популяции к определенным условиям местообитания. Особи мятлика лугового растущие в прериях и на равнине имеют прямостоячий стебель, а особи растущие в горных условиях имеют приподнимающийся стебель. В результате борьбы за существование выжили особи у которых на ранних этапах развития стебель прижимается к земле, т. е. он борется с ночными заморозками, к наиболее жизнеспособным в условиях горной местности являются и растения сильно опущенные.

Учение о борьбе за существование подтверждает, что именно этот фактор является движущей силой эволюции. Именно борьба, как ее не называй, конкуренция, соревнования. Вынуждает организмы приобретать новые признаки, которые позволяют им побеждать.

Фактор борьбы за существование учитывается и практической деятельности человека. При посадке растений одного вида необходимо соблюдать определенное расстояние между особями. При зарыблении водоемов ценными породами рыб из него удаляют хищников и малоценные породы. При выдаче лицензий на обстрел волков учитывают количество особей и т. д.

Естественный отбор.

⌠Естественный отбор идет не через выбор наиболее приспособленных, а через истребление форм наиболее приспособленных к условия жизненной обстановки - так пишет Ч. Дарвин в ⌠Происхождении видов. Естественный отбор основан на следующих посылках: а) особи любого вида в результате изменчивости, биологически не равные к условиям среды; одни из них в большей степени соответствуют условиям среды, другие в меньшей степени; б) особи любого вида борются с неблагоприятными им факторами среды и конкурируют между собой. В процессе этой борьбы и конкуренции, ⌠как правило, - через истребление неудовлетворительных √ выживают наиболее приспособленные формы. Переживание наиболее приспособленный связано с процессами дивергенции, в ходе которых, под непрерывным воздействием естественного отбора, формируются новые внутривидовые формы. Последние все более обособляются и служат источником образования новых видов и их прогрессивного развития. Естественный отбор √ творит новые формы жизни, создает удивительную приспособленность живых форм, обеспечивает процесс повышения организации, многообразия жизни.

Отбор начинается на уровне, где наиболее высока конкуренция между особями. Обратимся к классическому примеру, о котором писал сам Ч. Дарвин. В березовом лесу преобладают бабочки со светлой окраской. Это говорит о том, что бабочки со светлой окраской вытеснили бабочек с темной и пестрой окраской. Этот процесс прошел под действием естественного отбора на лучшую защитную окраску. При замене березы на породы с темной окраской коры на данной территории бабочки со светлой окраской начинают исчезать √ их поедают птицы. Оставшаяся в незначительном числе часть популяции с темной окраской начинает бурно размножаться. Идет отбор особей которые имеют шанс выжить и дать плодовитое потомство. В данном случае речь идет о межгрупповом соревновании, т. е. отбор идет между уже существующими формами.

Естественному отбору подвергаются и отдельные особи. Любое незначительное уклонение дающее преимущество особи в борьбе за существование может подхватываться естественным отбором. В этом заключается творческая роль отбора. Он действует всегда на фоне подвижного материала, непрерывно меняющегося в процессах мутирования и комбинирования.

Естественный отбор √ главная движущая сила эволюции.

Типы (формы) естественного отбора.

Различают два основных отбора: стабилизирующий и направленный.

Стабилизирующий отбор происходит в тех случаях, когда фенотипические признаки максимально соответствуют условиям среды и конкуренция довольно слабая. Такой отбор действует во всей популяции, уничтожая особей с крайними уклонениями. Например, существует некая оптимальная длина крыльев для стрекозы определенных размеров с определенным образом жизни в данной среде. Стабилизирующий отбор действует благодаря дифференциальному размножению, будет уничтожать тех стрекоз, у которых размах крыльев больше или меньше оптимального. Стабилизирующий отбор не способствует эволюционному изменению, а поддерживает фенотипическую стабильность популяции из поколения в поколение.

Направленный (движущий) отбор. Эта форма отбора возникает в ответ на постепенное изменение условий среды. Направленный отбор влияет на диапазон фенотипов, существующих в данной популяции, и оказывает селектвное давление, сдвигающее средний фенотип в ту или другую сторону. После того, как новый фенотип придет в оптимальное соответствие с новыми условиями среды, вступает в действие стабилизирующий отбор.

Направленный отбор приводит к эволюционному изменению. Вот один из примеров.

Открытие в сороковых годах антибиотиков создало сильное давление отбора в пользу бактериальных штаммов, обладающих генетической устойчивостью к антибиотикам. Бактерии очень сильно размножаются, в результате случайной мутации может появится устойчивая клетка, потомки которой будут процветать благодаря отсутствию конкуренции со стороны других бактерий, уничтожаемых данным антибиотиком.

Искусственный отбор.

Искусственный отбор это метод выведения новых пород домашних животных или сортов растений.

Человек с самых ранних времен своей цивилизации применяет искусственный отбор при разведении растений и животных. Дарвин пользовался данными по искусственному отбору, для объяснения механизма естественного отбора. Основными факторами искусственного отбора являются наследственность, изменчивость, действие человека, стремящегося довести наследственные отклонения до абсурда и отбор. Изменчивость, как свойство всех организмов изменяться, дает материал для отбора √ различного ряда уклонения. Человек заметив нужные ему отклонения приступает к отбору. Искусственный отбор основан на изоляции природных популяций или особей с нужными отклонениями и избирательном скрещивании организмов, обладающими признаками желательными для человека.

Отбор черефордской и абердии- ангусской пород крупного рогатого скота велся на количество и качество мяса, чернзейской и джерсейской пород √ на молочность. Овцы чемпширской и суффальской пород быстро созревают и дают хорошее мясо, но они менее выносливы и менее активны в поисках пищи, чем, например, шотландские черномордные овцы. Эти примеры, показывают, что в одной породе нельзя объединить все признаки, необходимые для максимального экономического эффекта.

При искусственном отборе человек создает направленное селективное действие, которое ведет к изменению частот аллелей и генотипов в популяции. Это эволюционный механизм, приводящий к возникновению новых пород, линий, сортов, рас и подвидов. Генофонды всех этих групп изолированы, но они сохраняют основную генную и хромосомную структуру, характерную для вида, к которому они все еще принадлежат. Создать новый вид или восстановить вымерший не во власти человека!

Дарвин различал в пределах искусственного отбора методический или систематический отбор и бессознательный отбор. При методическом отборе селекционер ставил перед собой вполне определенную цель, произвести новые породы, превосходящие все, что было в этом направлении создано. Бессознательный отбор направлен на сохранение уже имеющихся качеств.

В современной селекции существует две формы искусственного отбора: инбридинг и аутбридинг. Инбридинг основан на избирательном скрещивании близкородственных особей с целью сохранения и распространения особенно желательных признаков. Аутбридинг это скрещивание особей из генетически различных популяций. Потомки от таких скрещиваний обычно превосходят своих родителей.

Возникновение приспособлений. Относительный характер приспособленности.

Результатом естественного отбора является возникновение признаков, позволяющих организмам приспособится к условиям существования. Отсюда и появилось представление о приспособительном характере эволюции. На основе изучения возникновения приспособлений (адаптаций) возникло целое направление в биологии √ учение об адаптациях. Приспособительные признаки или адаптации подразделяются на физиологические и морфологические.

Физиологические адаптации. Обилие и большое значение для жизненной стойкости организма малых физиологических мутаций способствуют тому, что в популяциях начинается дифференцировка. Это понятно, если мутации по своей природе являются биологическими изменениями, которые прежде всего ведут к изменениям процессов внутриклеточного обмена веществ, и только через это к морфологическим преобразованиям. Примерами могут служить такие признаки организма, как стойкость по отношению к известным температурам, способность накапливать питательные вещества, общая активность и пр. Они легко дают смещение в обе стороны, и в обоих случаях могут быть благоприятными. Изучая всхожесть семян клевера красного при разных температурах показало, что наибольший % всхожести семена дают при +12С, но часть семян прорастает только в интервале +4-10С. Это способствует выживанию вида при низкой весенней температуре.

Пигментация животных по своему развитию и изменчивости приближается к физиологическим признакам. Большая или меньшая интенсивность окраски может иметь защитные значения в соответствующих условиях общего фона и освещения. Это уже морфологические приспособления.

В известных исследованиях Гаррисона был показан механизм самого возникновения различий в окраске двух популяций бабочек, возникших из одной сплошной популяции при разделении леса широкой просекой. В той части леса, где сосна была замещена березой, естественный отбор (преобладающее поедание птицами более темных особей) привел к значительному посветлению популяции бабочек.

Еще Ч. Дарвин обратил внимание на тот факт, что насекомые островов либо хорошие летуны, либо имеют редуцированные крылья. Такое явление как редукция органов, потерявших свое значение нетрудно объяснить, т. к. большинство мутаций связано именно с явлением недоразвития.

Анализ адаптаций показал, что они позволяют выжить организмам только в определенных условиях. Это можно понять даже проанализировав приведенные нами примеры. При вырубке берез светлые бабочки становятся легкой добычей птиц. Те же птицы появившиеся под островами уничтожают насекомых с редуцированными крыльями. Уже эти факты говорят, что приспособленность не абсолютна, а относительна.

Происхождение человека.

В антропологии существует несколько точек зрения на то, когда обособилась ветвь человеческая. Согласно одной из гипотез около 10 миллионов лет назад обезьянолюди разделились на три вида. Один вид √ прагориллы √ ушли в горные леса, где довольствовались вегетарианской пищей. Другой вид √ прашимпанзе √ выбрал групповой образ жизни. Главной пищей ему служили обезьяны мелких видов. Третий вид √ прачеловек √ предпочел охоту в богатой жизнью саванне. Это и была ветвь, которая привела к человеку современному.

Согласно современной гипотезе, выдвинутой Тимом Вайтоном, антропологом из Калифорнийского университета в Беркли, только пять миллионов лет назад, разделились ветви прачеловека и обезьяны. Тиман Вайт считает, что Австралопитек рамидус появившийся в это время в зависимости от обстоятельств двигался либо на четырех, либо на двух конечностях. И вероятно прошли сотни тысяч лет, прежде чем на смену смешанному движению пришло прямохождение.







Date: 2015-08-15; view: 390; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.041 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию