![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Другие формулировки
Подобный смысл имеют другие логические законы, многие из которых сложились исторически. В частности, закон двойного отрицания и закон Пирса эквивалентны закону исключённого третьего. Это означает, что расширение системы аксиом интуиционистской логики любым из этих трёх законов в любом случае приводит к классической логике. И всё же, в общем случае, существуют логики, в которых все три закона неэквивалентны. Примеры: Предположим, что P представляет собой утверждение «Сократ смертен». Тогда закон исключённого третьего для P примет вид: «Сократ смертен или Сократ бессмертен», откуда ясно, что закон отсекает все иные варианты, при которых Сократ и не смертен и не бессмертен. Последнее — это и есть то самое «третье», которое исключается. Гораздо более тонкий пример применения закона исключённого третьего, который хорошо демонстрирует, почему он не является приемлемым с точки зрения интуиционизма, состоит в следующем. Предположим, что мы хотим доказать теорему, что существуют иррациональные числа a и b, такие что рационально. Известно, что иррационально. Рассмотрим. Если данное число рационально, то теорема доказана. Иначе возьмём Поправка: доказательство того факта, что иррациональное число в иррациональной степени может быть рациональным, может быть проведено элементарным способом. Он не требует использования каких-то глубоких результатов из теории чисел. А именно, в качестве первого числа возьмём корень квадратный из двух, а второе число пусть будет равно удвоенному логарифму 3 по основанию 2. Очевидно, что при возведении в степень получается рациональное число 3. При этом как основание степени, так и показатель иррациональны. Доказательство того, что логарифм иррационален, состоит в том, что если бы он равнялся m/n, то 2 в степени m было бы равно 3 в степени n, что невозможно. Date: 2015-08-15; view: 440; Нарушение авторских прав |