Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Водород





 

Водород — бесцветный газ, сжижающийся лишь при очень глубоком холоде. Он — самый легкий из всех газов; плотность водорода в 14,5 раз меньше плотности воздуха; поэтому наполненные водородом шарики устремляются в небо.

В химическом плане водород — чрезвычайно активное вещество: он соединяется с очень многими химическими элементами, если не сказать, что со всеми. Он первым стоит в таблице Менделеева, и его атомная масса равна 1,0079.

После общих физических и химических характеристик (более подробно о них мы будем говорить дальше) посмотрим на водород с позиции эфирной теории; нас интересует конфигурация его атома — его топология. О том, что атом водорода представляет собой тор с вращающейся оболочкой, мы уже знаем. Шнур тора состоит как бы из соосно собранных электронов, а электрон представляет собой бегающие по кругу друг за другом три эфирных шарика. Значит, в сечении шнура тора — три таких шарика.

А сколько шариков во всем атоме водорода? Подсчитать не трудно: из физики нам известно, что атом водорода в 1840 раз тяжелее электрона, а в электроне — три шарика; значит, всего — 5520 шариков. Правда, в той же физике иногда указывается, что атом водорода тяжелее электрона всего лишь в 1863 раз; и тогда в нем будет уже 5508 эфирных шариков. Но встречается и такое: электрон легче протона (ядра атома водорода) в 2000 раз; значит, — не 5520 и не 5508, а 6000 шариков (?).

Комментируя эти расхождения, можно было бы сослаться на неточность физических опытов и вычислений: дескать, 2000 — при грубом округлении, 1840 — более точно, 1836 — совсем точно. Но, отталкиваясь от эфирной теории, мы теперь заявляем, что точны все три числа, и более того — действительный разброс инерции атома водорода намного шире. (Но при всей широте отклонений инерция конкретного атома может быть только строго кратной инерции электрона — так уж устроен шнур тора; а инерция электрона, в свою очередь, неизменна: это — три бегающих с постоянной скоростью шарика.)

У атома водорода есть минимальный размер, меньше которого он не может быть. Определяется этот наименьший размер тора упругостью шнура, а она, в свою очередь, — избыточной плотностью окружающего эфира. Каков он — этот размер? Трудно сказать, но, выбирая из упомянутых трех чисел, можно остановиться на минимальном, то есть на 1836; реально, конечно, это число еще меньше: может быть даже где то около 1800. Да это и не важно: тысяча восемьсот так тысяча восемьсот; остановимся на этом.

И вот, начиная с тысячи восьмисот, наверняка есть атомы с числом 1801, и с числом 1802, и с числом 1803, и так далее вплоть до … (?), но верхнего предела почти что нет: атом водорода может быть тяжелее электрона и в три тысячи раз, и в четыре, и в пять тысяч, и даже более, пока не превратится в атом гелия. Этим объясняется то, что у водорода обнаружены изотопы: протий, дейтерий, тритий с атомными весами1, 2 и 3. Только мы теперь заявляем, что их — изотопов водорода — в действительности не три, а более четырех тысяч; и то, что они оказались разбиты всего лишь на три указанных группы, говорит о грубости методов сортировки.

Внутренний диаметр наименьшего атома водорода — протия — можно определить, зная, что по окружности расположены 1800 эфирных шариков; следовательно, он приблизительно равен 570 диаметров шариков. (Здесь уместно отметить, что диаметр эфирного шарика, или просто — шарик, является абсолютной мерой длины.) Такой приблизительный расчет не учитывает два обстоятельства: во-первых, соседние шарики не выстраиваются в линию, а смещены друг относительно друга, то есть в своем вращении соседние строенные (электронные) шарики сдвинуты на некоторую фазу, а во-вторых, шарики на внутреннем диаметре тора сдеформированы. Обе эти поправки уменьшают действительный диаметр, поэтому будем считать, что число 570 как наиболее точное. В дальнейшем нас будет интересовать наименьший радиус изгиба шнура тела атомов, и он, следовательно, будет равен 285 эфирным шарикам.

Почему тор стремится принять форму овала, гантели, или даже восьмерки с перехлестом? Выше мы уже объясняли это; повторим: вращающаяся оболочка тора возмущает прилегающий к ней эфир, и больше — во внутреннем пространства, чем вовне; поэтому эфирное давление снаружи оказывается больше, чем внутри; разность давлений стремится сложить тор; и в противоборстве с упругостью шнура определяется окончательная его форма.

 

Противоборство сжимающей и упругой сил при отсутствии трения порождает неустойчивость формы; это — уже динамика. Даже идеально круглый атом протия не сохраняет свою круглую форму: он попеременно сжимается в овал то по одной оси, то по перпендикулярной к ней, то есть пульсирует. Овальный тор более крупного атома склонен прогибаться в гантель; гантель еще более крупного атома — в восьмерку, а восьмерка, в свою очередь, закручивается в перехлест; и поэтому каждый атом водорода находится в состоянии пульсации.

Динамика форм атомов усложняется еще и тем, что у вытянутых торов (у овала, у гантели и у восьмерки) края загибаются в стремлении сблизиться друг с другом. Кривизна такого поперечного загиба также определяется упругостью шнуров; минимальный радиус кривизны колеблется где-то около тех же 285 шариков: чуть меньше или чуть больше; такое колебание тоже представляется как пульсация. Следовательно, крупные атомы водорода пульсируют в разных направлениях и, естественно, с разными частотами; и чем крупнее атом, тем сложнее и энергичнее его колебания; этим можно объяснить то, что самые крупные атомы водорода (в районе трития) склонны к радиоактивности, то есть к распаду. Известно даже, что усредненное время полураспада трития составляет 12 лет.

Пульсирующие атомы водорода возбуждают вокруг себя эфир (стоячие тепловые поля), и это возбуждение делает их пушистыми, то есть обладающими способностью отталкиваться, не приближаясь вплотную, от других атомов. Пушистость делает атомы летучими, а в целом водород — газообразным. Соединение атомов водорода в молекулы не устраняет их пульсацию, и поэтому молекулярный водород (а он чаще именно таким и бывает) — тоже газообразен. Свои стоячие тепловые поля атом водорода теряет только в тех случаях, когда соединяется в молекулы с другими химическими элементами и когда его пульсация подавляется молекулярными связями.

Взятая нами на вооружение топология атомов позволяет объяснить физическую сторону валентности, то есть способности атомов соединяться друг с другом; в общих чертах мы об этом уже говорили. У атома водорода (у протия), то есть у тора с вращающейся оболочкой, одна из двух сторон — как бы присасывающая (она в самом деле присасывающая), и выглядит она как воронка, внутрь которой устремляется эфир; это и есть валентность атома: этой своей стороной, то есть этой присасывающей воронкой, атом готов прилипнуть (присосаться) к другим атомам. У протия присасывающая воронка — идеально круглая, но это — исключение: у всех других атомов она выглядит как петля, и даже у дейтерия и трития она больше похожа на петлю, чем на кольцеобразную воронку, а если говорить точнее, то, по крайней мере, у трития таких петель — уже почти две (у восьмерки — две петли); а если восьмерка — с перехлестом, то есть петли развернуты на 180 градусов, то тогда образуются две законченные петли с присасывающими воронками, расположенными с разных сторон.

Благодаря наличию у атомов водорода присасывающих воронок (валентности), они могут объединяться и объединяются в пары, то есть в молекулы. Очевидно, самое прочное соединение будет возникать в том случае, когда размеры атомов будут совпадать: протий с протием, дейтерий с дейтерием и так далее. Но по теории вероятности такие совпадения — маловероятны (еще раз в связи с этим напомним, что изотопов у водорода не три, а более четырех тысяч); поэтому в общей своей массе молекулы водорода будут состоять из разнокалиберных атомов, прочность соединения которых — не столь высока. Она будет ослабляться еще и от того, что у спарившихся разнокалиберных атомов не будут совпадать частоты их пульсаций. Если даже предположить, что произошло почти невероятное: соединились абсолютно одинаковые по размерам два протия, то и тогда прочность их соединения не будет абсолютной: наверняка их пульсации будут смещены по фазе (даже — в противофазе), и это ослабит молекулу.

Пользуясь моментом, выскажем предположение, что крупные атомы водорода (в районе дейтерия и, тем более, в районе трития) могут присоединять к себе по два мелких атома (протия).

У атомов водорода, как мы сказали, валентность выражается в наличии присасывающих воронок. У молекул эти воронки нейтрализованы, поэтому молекула водорода, как единое целое, казалось бы, нейтральна и к соединению с другими атомами не должна стремиться. Все так на самом деле и есть за исключением одного «но»: соединенные в пару приблизительно одинаковые по размерам атомы водорода образуют по контуру другую разновидность валентности — присасывающий желоб; с его помощью молекула водорода может присоединяться к другим атомам, имеющим подобную валентность, например к атомам металлов, создавая гидриды. Мешающая такому присоединению пульсация атомов водорода может быть в подобных случаях подавляться соседними атомами. С помощью присасывающих желобов молекулы водорода должны были бы соединяться и между собой, но мешают этому все те же стоячие тепловые поля, то есть пушистость молекул. Если же ее устранит, например замораживанием, то молекулы действительно начнут соединяться и создавать твердые тела, и эти тела будут обладать свойствами металлов: контурные присасывающие желоба их молекул будут образовывать непрерывные дорожки для электронов, а бугристые поверхности тел (у атомов водорода нет прямых участков) будут хорошо отражать свет и создавать характерный металлический блеск. Но для того, что бы «успокоить» атомы водорода, их нужно охладить до температуры минус 259,1 градуса Цельсия.

Подробнее о соединениях водорода с конкретными другими химическими элементами будем говорить при рассмотрении топологий атомов этих элементов.

 

Гелий

 

Гелий занимает вторую позицию в таблице Менделеева после водорода. Атомная масса гелия — 4,0026. Он представляет собой инертный газ без цвета. Его плотность — 0,178 грамм на литр. Сжижается гелий труднее всех известных газов лишь при температуре минус 268,93 градуса Цельсия и практически не отвердевает. Охлажденный до минус 270,98 градуса Цельсия гелий приобретает сверхтекучесть. Образуется гелий чаще всего в результате распада крупных атомов. На Земле он распространен в малых количествах, но на Солнце, где идет интенсивный распад атомов, гелия очень много. Все эти данные являются как бы паспортными и хорошо известны.

Займемся топологий гелия, и для начала определим его размеры. Учитывая, что атомная масса гелия в четыре раза больше водородной, а атом водорода в 1840 раз тяжелее электрона, получим массу атома гелия равной 7360 электронам; следовательно, общее количество эфирных шариков в атоме гелия составляет приблизительно 22 000; длина шнура атома и диаметр исходного тора соответственно равны 7360 и 2300 эфирным шарикам. Чтобы зримо представить соотношение толщины шнура исходного тора атома гелия и его диаметра, изобразим на листе бумаги ручкой окружность диаметром в 370 миллиметров, и пусть след от ручки имеет ширину в одну треть миллиметра; полученная окружность даст нам указанное представление. Один электрон (строенные эфирные шарики) будет занимать на нарисованной окружности всего лишь 0,15 миллиметров.

Скручивание исходного тора в законченную форму атома гелия происходит следующим образом. Сначала окружность сплющивается в овал, потом — в форму гантели, далее — в восьмерку, а затем петли восьмерки развертываются так, что возникает перехлест. Между прочим, перехлест у более крупных атомов не образуется, и объясняется это тем, что длина шнура у атома гелия пока еще не большая, и при стремлении средних точек шнура сблизиться — края (петли) вынуждены развернуться. Далее края изогнутся и начнут сближаться.

 

До этого момента топология атома гелия, как мы видим, схожа с топологией атома изотопа водорода — трития, но если у трития не хватало сил на замыкание краев (не хватало длины его шнура), то у гелия петли надвигаются одна на другую и таким образом замыкаются. Для того, чтобы убедиться в надежности соединения петель, достаточно проследить за расположением их присасывающих сторон: у внутренней петли она будет снаружи, а у внешней — изнутри.

Топологию атомов очень удобно представлять в виде проволочных моделей; для этого достаточно использовать в меру упругую, но достаточно пластичную проволоку. Атом водорода изобразится в виде обычного кольца. Увеличим длину куска проволоки в четыре раза (во столько раз атом гелия тяжелее атома водорода), свернем его в кольцо, спаяем концы и продемонстрируем процесс скручивания атома гелия. При скручивании мы должны постоянно помнить, что радиусы гибки не должны быть меньше радиуса кольца, представляющего собой атом водорода; это как бы условие, задаваемое упругостью шнура — торовых оболочек. (В натуре, напомним, минимальный радиус равнялся 285 эфирным шарикам.) Принятый минимальный радиус гибки определяет топологию всех атомов; и еще: следствием одинаковых радиусов гибки будут одинаковые размеры присасывающих петель (своего рода — их стандартизация), и поэтому-то они образуют устойчивую валентность, выраженную в способности соединять различные атомы между собой. Если бы петли имели различные размеры, их соединение было бы проблематичным.

Доводя процесс скручивания проволочной модели атома гелия до конца, мы обнаружим, что соединенные внахлест петли надвинуты одна на другую не до упора. Точнее говоря, они предпочли бы закрутиться еще дальше, но не пускает упругость шнура, то есть условие минимального радиуса. И при всякой попытке петель продвинуться навстречу еще дальше упругость шнура отбросит их назад; отскочив, они снова устремятся вперед, и снова упругость отбросит их назад; при этом атом гелия будет то съеживаться, то распускаться, то есть возникает пульсация. Пульсация, в свою очередь, породит стоячее тепловое поле вокруг атома и сделает его пушистым; так мы пришли к выводу, что гелий — газ.

На основании топологии можно объяснить и прочие физические и химические характеристики гелия. О его инертности, например, говорит то, что его атомов нет ни открытых присасывающих петель, ни присасывающих желобов: он не способен вообще соединяться с другими атомами, поэтому — всегда атомарен и практически не отвердевает. Цвета гелий не имеет потому, что у его атомов нет прямых «звучащих» участков шнуров; а сверхтекучесть у него возникает вследствие всякого отсутствия вязкости (слипание атомов), округлой формы и малого размера атома.

Как и у водорода, у гелия атомы не имеют одного размера: одни из них больше, другие — меньше, а в общем они занимают почти все весовое пространство от водорода (трития) до следующего за гелием лития; менее прочные изотопы гелия, конечно, давно уже распались, но и существующих в настоящее время можно насчитать не одну сотню.

В таблице Менделеева гелий лучше располагать не в конце первого периода — в одном ряду с водородом, а в начале второго периода перед литием, потому что его атом, как и атомы всего этого периода, представляет собой одиночную конструкцию (одиночный клубочек), в то время как атом следующего инертного газа неона выглядит уже в виде спаренной конструкции, похожей по этому признаку на атомы третьего периода.

 

Литий

 

Литий занимает третий номер в таблице Менделеева; его атомная масса равна 6,94; он относится к щелочным металлам. Литий — самый легкий из всех металлов: его плотность составляет 0,53 грамма в сантиметре кубическом. Он серебристо-белого цвета, с ярким металлическим блеском. Литий мягок и легко режется ножом. На воздухе он быстро тускнеет, соединяясь с кислородом. Температура плавления лития равна 180,5 градуса Цельсия. Известны изотопы лития с атомными весами 6 и 7. Первый изотоп используется для получения тяжелого изотопа водорода — трития; другой изотоп лития используется в качестве теплоносителя в котлах ядерных реакторов. Таковы общие физико-химические данные лития.

Топологию атомов лития начнем опять же с уяснения размеров исходного тора. Теперь мы знаем, что у каждого химического элемента, и в том числе у лития, существует большое количество изотопов, измеряемое сотнями и тысячами; поэтому размеры атомов будем указывать от … и до …. Но что значат эти пределы? Можно ли их определить точно? Или они указываются приблизительно? И каково количественное соотношение изотопов? Сразу скажем: однозначных ответов на поставленные вопросы нет; всякий раз необходимо внедряться в конкретную топологию атомов. Разберемся в этих вопросах на примере лития.

Как мы заметили, переход от протия к гелию с точки зрения топологии происходит планомерно: с увеличением размера исходного тора –постепенно изменяется окончательная конфигурация атомов. Но физические и, особенно, химические свойства атомов при переходе от протия к гелию изменяются более чем существенно, скорее — радикально: от всеобщей притягательности протия до полной инертности гелия. Где, на каком изотопе это произошло?

Подобные скачки свойств связаны с размерными скачками изотопов. Большой атом водорода (тритий), приобретающий очертания атома гелия, оказывается радиоактивным, то есть непрочным. Вызвано это тем, что его загнутые края петель не достигают друг друга, и можно представить, как они трепыхаются, устремленные навстречу. Они напоминают руки двух людей в расходящихся лодках, бессильно стремящихся дотянуться и сцепиться. Внешнее эфирное давление будет давить на консоли трепыхающихся петель атомов так сильно, что это до добра не доведет; получив со стороны даже небольшое дополнительное сдавливание, консоли отломятся — не выдержат крутого изгиба шнура, и атом разрушится; так оно и происходит. Поэтому можно сказать, что среди изотопов на границах существующих физико-химических переходов наблюдаются провалы: там изотопов просто нет.

Подобный провал существует между гелием и литием: если атом — уже не гелий, но еще не литий, то он непрочен, и его уже давно в земных условиях нет. Поэтому изотоп лития с атомным весом, равным шести, то есть с длиной шнура тора в 11 эфирных шариков, встречается очень редко и, как было сказано, используется для получения трития: его легко разорвать, укоротить и получить в результате изотоп водорода.

Таким образом, мы, вроде, определились с наименьшими размерами атома лития: это — 11 связанных электронов. Что же касается его верхнего предела, то тут возникает некоторая загвоздка: дело в том, что, согласно топологии, атом лития не имеет особых отличий от атома следующего за ним бериллия (мы в этом скоро убедимся), и между изотопами того и другого элементов нет никакого провала. Поэтому пока не станем указывать верхний предел размера атома лития.

Проследим за формообразованием атома лития. Исходная окружность только что возникшего микрозавихрения с указанными выше размерами будет стремится превратится в овал; только у лития овал — очень длинный: приблизительно в 8 раз длиннее диаметра концевого закругления (будущей петли); это — очень вытянутый овал. Начало свертывания атома лития похоже на такое же начало у больших атомов водорода и у гелия, но дальше происходит отклонение: восьмерка с перехлестом, то есть с разворотом петель, не возникает; дальнейшее сближение длинных сторон (шнуров) овала до полного их соприкосновения сопровождается одновременным загибом концов навстречу друг другу.

 

Почему не образуется восьмерка с перехлестом? Прежде всего потому, что овал очень длинный, и даже его полный прогиб в гантелю до соприкосновения шнуров в середине не вызывает их сильных изгибов; поэтому потенция разворота крайних петель — очень слабая. А во-вторых, развороту в какой-то степени противодействует начавшийся загиб концов овала. Другими словами: активный момент сил, стремящийся развернуть концевые петли, очень мал, а момент сопротивления развороту — большой.

Для наглядности воспользуемся резиновыми кольцами, например теми, что применяются в уплотнениях машин. Если пережимать кольцо малого диаметра, то оно обязательно свернется в восьмерку с перехлестом; а если выбрать кольцо большого диаметра, то его пережим до полного соприкосновения шнуров разворот концевых петель не вызывает. К слову: эти резиновые кольца также очень удобны для моделирования топологии атомов; если, конечно, имеется их широкий набор.

Загиб концов овала вызывается, как мы уже знаем, возмущением эфира между ними: чуть-чуть стронувшись с идеально прямого положения, они уже вынуждены будут сближаться до полного соприкосновения. Значит, в разные стороны концы отгибаться не могут. Но с направлением загиба у них есть выбор: либо так, что присасывающие стороны концевых петель окажутся снаружи, либо — изнутри. Первый вариант более вероятен, та как момент от сил отталкивания вращающихся оболочек шнура от прилегающего эфира на внешних точках петель будет больше, чем на внутренних.

Сближающиеся боковые стороны овала очень скоро войду в соприкосновение, смычка шнуров распространится от центра к концам и остановится только тогда, когда на концах окончательно сформируются петли с минимально допустимыми радиусами изгиба. Одновременно происходящие загибы и взаимное сближение этих петель приводят к столкновению их вершин, после чего в дело вступают их присасывающие стороны: петли, присасываясь, ныряют вглубь; и завершается процесс формирования конфигурации атома лития тем, что сместившиеся петли упираются своими вершинами в спаренные шнуры ровно по центру конструкции. Отдаленно такая конфигурация атома напоминает сердечко или, точнее, яблоко.

Напрашивается сам собой первый вывод: атом лития начинается тогда, когда вершины спарившихся первичных петель, нырнувшие внутрь конструкции, дотянутся до шнуров середины атома. А до того был еще не литий, а какой-то иной элемент, которого теперь уже нет в природе; его атом был крайне неустойчив, очень сильно пульсировал, был поэтому пушистым и относился к газам. Но и атом самого начального изотопа лития (мы его определили состоящим из 11 000 связанных электронов) тоже получается не очень прочным: радиусы изгиба его петель — предельные, то есть упругие шнуры изогнуты до предела, и при всяком внешнем воздействии они готовы лопнуть. У более крупных атомов это слабое место устраняется.

Представляя по результатам топологии образ атома лития, можно оценить то, что получилось. Две первичные петли замкнулись и нейтрализовались, также нейтрализованными оказались вторичные петли по обе стороны от первичных. Спаренные шнуры создали желоб, и этот желоб идет по всему контуру атома — он как бы замкнут в кольцо, — и его присасывающая сторона оказалась снаружи. Отсюда следует, что атомы лития могут соединяться и между собой и с другими атомами только с помощью своих присасывающих желобов; петлевое молекулярное соединение атом лития образовать не может.

Сильно выпуклые присасывающие желоба атомов лития могут соединяться между собой только на коротких участках (теоретически — в точках), и поэтому пространственная конструкция из соединившихся между собой атомов лития получается очень рыхлой и разреженной; отсюда — малая плотность лития: он почти в два раза легче воды.

Литий — металл; его металлические свойства вытекают из особенностей форм его атомов. Можно сказать по-другому: те особые свойства лития, которые обусловлены особыми формами его атомов и которые делают его непохожим физически и химически на другие вещества, названы металлическими; рассмотрим часть из них:

* электропроводность: она возникает по той причине, что атомы имеют кольцеобразную форму из спаренных шнуров, создающих присасывающие желоба, открытые наружу, охватывающие атомы по контуру и замыкающиеся сами на себе; электроны, прилипшие к этим желобам, могут беспрепятственно перемещаться по ним (напомним еще раз; что трудности возникают при отрыве электронов от атомов); а так как атомы соединяются между собой теми же желобами, то у электронов есть возможность перескакивать с атома на атом, то есть смещаться по телу;

* теплопроводность: упруго-изогнутые шнуры атома образуют чрезвычайно жесткую упругую конструкцию, которая практически не поглощает низкочастотные крупноамплитудные (тепловые) удары соседних атомов, а передает их дальше; и если бы не было в толще атомов всевозможных нарушений в их контактах (дислокаций), то тепловая волна распространялась бы с огромной скоростью;

* блеск: высокочастотные малоамплитудные удары световых волн эфира легко отражаются от напряженно изогнутых шнуров атомов и уходят прочь, подчиняясь законам волнового отражения; у атома лития нет прямых участков шнуров, поэтому у него нет собственного «звучания», то есть нет собственного цвета — литий поэтому серебристо-белый с сильным блеском на срезах;

* пластичность: округлые атомы лития могут соединяться между собой как угодно; они могут, не разрываясь, обкатываться друг по другу; и это выражается в том, что тело из лития может менять свою форму, не теряя своей целостности, то есть быть пластичным (мягким); в результате литий режется без особого труда ножом.

На примере отмеченных физических особенностей лития можно уточнить само понятие металла: металл есть вещество, состоящее из атомов с круто изогнутыми шнурами, образующими контурные присасывающие желоба, открытые наружу; атомы ярко выраженных (щелочных) металлов не имеют открытых присасывающих петель и прямых или плавно изогнутых участков шнуров. Поэтому литий в нормальных условиях не может соединиться с водородом, так как атом водорода представляет собой петлю. Их соединение может быть только гипотетическим: при глубоком холоде, когда водород отвердевает, его молекулы могут соединяться с атомами лития; но по всему видно, что их сплав был бы таким же мягким, как сам литий.

Заодно уточним понятие пластичности: пластичность металлов определяется тем, что их округлые атомы могут обкатываться друг по другу, изменяя взаиморасположение, но не теряя контакты между собой.

 

Date: 2015-08-07; view: 439; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию