Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Теплоемкость твердых тел⇐ ПредыдущаяСтр 15 из 15
Классическая теория не смогла объяснить зависимость теплоемкости твердых тел от температуры, а квантовая статистика решила эту задачу. Так, А. Эйнштейн, приближенно считая, что колебания атомов кристаллической решетки независимы (модель кристалла как совокупности независимых колеблющихся с одинаковой частотой гармонических осцилляторов), создал качественную квантовую теорию теплоемкости кристаллической решетки. Она впоследствии была развита П. Дебаем, который учел, что колебания атомов в кристаллической решетке не являются независимыми (рассмотрел непрерывный спектр частот гармонических осцилляторов). Рассматривая непрерывный спектр частот осцилляторов, П. Дебай показал, что основной вклад в среднюю энергию квантового осциллятора вносят колебания низких частот, соответствующих упругим волнам. Поэтому тепловое возбуждение твердого тела можно описать в виде упругих волн, распространяющихся в кристалле. Согласно корпускулярно-волновому дуализму свойств вещества, упругим волнам в кристалле сопоставляют фононы, обладающие энергией Е= Квазичастицы, в частности фононы, сильно отличаются от обычных частиц (например, электронов, протонов, фотонов), так как они связаны с коллективным движением многих частиц системы. Квазичастицы не могут возникать в вакууме, они существуют только в кристалле. Импульс фонона обладает своеобразным свойством: при столкновении фононов в кристалле их импульс может дискретными порциями передаваться кристаллической решетке — он при этом не сохраняется. Поэтому в случае фононов говорят о квазиимпульсе. Энергия кристаллической решетки рассматривается как энергия фононного газа, подчиняющегося статистике Бозе - Эйнштейна, так как фононы являются бозонами (их спин равен нулю). Фононы могут испускаться и поглощаться, но их число не сохраняется постоянным; поэтому в формуле (235.1) для фононов необходимо m положить равным нулю. Применение статистики Бозе - Эйнштейна к фононному газу — газу из невзаимодействующих бозе-частиц — привело П. Дебая к количественному выводу, согласно которому при высоких температурах, когда T>>TD (классическая область), теплоемкость твердых тел описывается законом Дюлонга и Пти, а при низких температурах, когда T<<TD (квантовая область), — пропорциональна кубу термодинамической температуры: СV~
Кристалл представляет собой систему упорядоченно расположенных атомов, обладающих определенными массами; между атомами действуют силы притяжения и отталкивания, уравновешивающие друг друга при определенных равновесных расстояниях между атомами. При отклонении атома из положения равновесия возникает возвращающая сила, противоположная смещению, величина которой зависит от типа атома, его окружения и направления смещения в кристалле. Согласно классической теории колебаний, в такой системе "упруго-связанных масс", состоящей из Именно как набор независимых осцилляторов с индивидуальными собственными частотами Согласно классической теории, при температуре Значительно более точное описание тепловых свойств кристалла дает квантовая теория теплоемкости кристаллов, разработанная Эйнштейном и Дебаем. В ее основе лежит предположение о квантовании энергии колебаний, подобно тому как квантовалась энергия электромагнитных колебаний в квантовой теории теплового излучения (том 5). Согласно квантовой теории, энергия каждого нормального колебания квантуется по тем же законам, как и энергия одиночного осциллятора (см. том 5). Энергию Теплоемкость кристаллов Как уже отмечалось в начале главы, внутренняя энергия (а затем и теплоемкость) кристалла в принципе может быть вычислена путем определения всех частот нормальных колебаний кристалла и определением энергии всех осцилляторов, используя распределение Бозе-Эйнштейна. Если вторая часть задачи трудностей не вызывает, то ее первая часть чрезвычайно сложна в математическом отношении, она решена в настоящее время только для сравнительно простых молекул. Поэтому были найдены упрощенные способы вычисления спектра собственных частот осцилляторов, некоторые из них рассмотрены в данном разделе. Модель Эйнштейна. В модели Эйнштейна считают, что атомы колеблются независимо друг от друга и что частоты колебаний всех атомов одинаковы. В таком случае для подсчета внутренней энергии кристалла, содержащего атомов, достаточно рассмотреть один осциллятор, а затем домножить результат на
Рис. 1 Зависимость теплоемкости При Все же модель Эйнштейна хорошо описывает теплоемкость кристаллов при комнатных и более высоких температурах. Также эта модель идеально подходит для описания теплоемкости отдельных молекул и хорошо подходит для описания вклада оптических фононов (частота которых обычно слабо зависит от волнового вектора) в теплоемкость кристаллов. Учет коллективных нормальных колебаний атомов значительно уточняет описание теплоемкости при низких температурах. Дело в том, что акустические коллективные колебания имеют более низкие частоты. Энергии тепловых колебаний порядка Подход к вычислению энергии колебаний кристалла. Как отмечалось выше, вычисление спектра частот нормальных колебаний является слишком сложной задачей. Поэтому при вычислении энергии колебаний атомов в кристалле обычно используют различные упрощения. Чаще всего разрешенные значения волновых векторов фононов вычисляют по той же схеме как это делалось в теории Ферми-газа или же при выводе распределения Планка, а именно, рассматривают кубический кристалл с характерным размером
Далее, накладывают периодические граничные условия на вид функций
которые выполняются, если: Тогда волновой вектор Где В таком случае на одно разрешенное значение вектора В сферически-симметричных случаях (когда . С помощью Функция
Рассмотрим применение этого подхода на примере модели Дебая. Модель Дебая. В рамках модели Дебая считают, что Функцию
Необходимо помнить об условии нормировки. Это условие требует, чтобы общее число осцилляторов равнялось
Вид функции
Рис. 2. Функция плотности состояний
Значения Внутренняя энергия, отвечающая всем трем типам поляризации осцилляторов, в рамках теории Дебая вычисляется как интеграл:
Здесь
Следует отметить, что (*) можно вычислить только численными методами. Для вычисления теплоемкости
Полученный интеграл, как и выражение (*), можно вычислить только численными методами, график зависимости
Рис. 3.12. Зависимость теплоемкости
При высоких значениях температуры При малых температурах Закон Таким образом модель Дебая сравнительно хорошо описывает зависимость Для приближенной аппроксимации оптических ветвей дисперсионной зависимости фононов часто используют модель Эйнштейна или строят модели, похожие на рассмотренную модель Дебая, изменяя в ней зависимость
Date: 2015-08-06; view: 1590; Нарушение авторских прав |