Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Глава 3. Революции в естествознании ⇐ ПредыдущаяСтр 5 из 5
В истории естествознания процесс накопления знаний сменялся периодами научных революций, когда происходила ломка старых представлений и взамен их возникали новые теории. Крупные научные революции связаны с такими достижения человеческой мысли, как: ü учение о гелиоцентрической системе мира Н. Коперника, ü создание классической механики И. Ньютоном, ü ряд фундаментальных открытий в биологии, геологии, химии и физике в первой половине XIX столетия, подтвердившие процесс эволюционного развития природы и установившие тесную взаимосвязь многих явлений природы, ü крупные открытия в начале XX столетия в области микромира, создание квантовой механики и теории относительности. Рассмотрим эти основные достижения. R Польский астроном Н. Коперник в труде «Об обращении небесных сфер» предложил гелиоцентрическую картину мира вместо прежней птолемеевой (геоцентрической). Она явилась продолжением космологических идей Аристотеля, и на нее опиралась религиозная картина мира. Заслуга Н. Коперника состояла также в том, что он устранил вопрос о «перводвигателе» движения во Вселенной, так как, согласно его учению, движение является естественным свойством всех небесных и земных тел. Вполне понятно, что его учение не соответствовало мировоззрению католической церкви, и с этого времени начинается противостояние науки и церкви по главным вопросам, касающимся природы. R Сравнимые по масштабу перемены в теоретической физике произошли в XVII в. Был осуществлен переход от аристотелевой физики к ньютоновой, которая господствовала в западной науке в течение трех столетий. Используя эту модель, физика достигла прогресса и выгодно отличалась от других дисциплин. Ее законы приобрели математическую формулировку, она доказала свою эффективность при решении многих проблем. С тех пор западная наука добилась крупных успехов и стала мощной силой, преобразующей мир. К тому же она определенным образом формировала мировоззрение ученых. Вступала в силу механистическая картина мира. R Говоря о создании механики Ньютоном, нельзя не упомянуть имя Галилео Галилея, который стоял у ее истоков. Его принцип инерции был крупнейшим достижением человеческой мысли: предложив его миру, он решил фундаментальную проблему — проблему движения. Уже одного этого открытия было бы достаточно для того, чтобы Галилей стал выдающимся ученым Нового времени. Однако его научные результаты разнообразны и глубоки. Он исследовал свободное падение тел и установил, что скорость свободного падения тел не зависит от их массы (в отличие от Аристотеля) и траектория брошенного тела представляет собой параболу. Известны его астрономические наблюдения Солнца, Луны, Юпитера. В работе «Диалог о двух системах мира — Птолемеевой и Коперниковой» он доказал правильность гелиоцентрической картины мира, утверждению которой способствовали передовые ученые того времени. R Первый закон механики Ньютона — это принцип инерции, сформулированный Галилеем. Во втором законе механики Ньютон утверждает, что ускорение, приобретаемое телом, прямо пропорционально приложенной силе и обратно пропорционально массе этого тела. И третий закон механики Ньютона есть закон действия и противодействия: действия двух тел друг на друга всегда равны по величине и противоположны по направлению. И еще один закон, предложенный Ньютоном, закон всемирного тяготения, звучит так: все тела взаимно притягиваются прямо пропорционально их массам и обратно пропорционально квадрату расстояния между ними. Это — универсальный закон природы, на основе которого была построена теория Солнечной системы. «Механика Ньютона поражает своей простотой. Она имеет дело с материальными точками и расстояниями между ними и, таким образом, является идеализацией реального физического мира. Но благодаря этой простоте стало возможным построение замкнутой механической картины мира. Его теория использовала строгий математический аппарат и опиралась на научный эксперимент. Именно такая тенденция наметилась в физике после его работ». Благодаря трудам Галилея и Ньютона XVIII век считается началом того длительного периода времени, когда господствовало механистическое мировоззрение. R Развитие биологии в XVIII веке также не обходилось без революционных открытий в то время шло своим путем: Þ Г. Мендель (1822-1884) открыл законы наследственности, скрещивая семена гороха в течение восьми лет. Þ Исследуя бактерии, Л. Пастер показал, что они присутствуют в атмосфере, распространяются капельным путем и их можно разрушить высокой температурой. В XIX в. микробиология помогала побеждать инфекционные болезни. Þ Итогом развития эволюционной концепции стала работа Ч. Дарвина (1809— 1882) «Происхождение видов путем естественного отбора» (1859). Эта теория имела такое же влияние на умы людей, какое в свое время имела теория Коперника. Это была научная революция в области биологии. Þ R Следующая научная революция, после которой резко изменилась система взглядов и подходов, также связана с физикой. Это произошло в конце XIX — начале XX столетия. Толчком к построению новой физической картины мира послужил ряд новых экспериментальных фактов, которые не могли быть описаны в рамках старых теорий, как это обычно бывает в науке. К таким фактам относятся прежде всего: ü исследования Фарадея по электрическим явлениям, ü работы Максвелла и Герца по электродинамике, ü изучение явления радиоактивности Беккерелем, ü открытие первой элементарной частицы (электрона) Томсоном и т.д. Проникая в область микромира, физики столкнулись с неожиданными проявлениями физической реальности, для описания которой возникла потребность в новой теории, ибо сделать это с помощью классической механики не удавалось. Поэтапно, благодаря работам ряда физиков и главным образом Бора, Гейзенберга, Шредингера, Планка, де Бройля и других, была построена физическая теория микромира, создана квантовая механика. Согласно этой теории, движение микрочастиц в пространстве и времени не имеет ничего общего с механическим движением макрообъектов и подчиняется соотношению неопределенностей: если известно положение микрочастицы в пространстве, то остается неизвестным ее импульс и наоборот. R В 1905 г. А. Эйнштейн создал специальную теорию относительности, в которой свойства пространства и времени связаны с материей и вне материи теряют смысл. Эта теория дает преобразование пространственных и временных координат тел, которые двигаются со скоростями, сравнимыми со скоростью света. Вторая часть теории, которая называется общей теорией относительности, связывает присутствие больших гравитационных полей (или массы) с искривлением пространства. Эта часть теории используется в космологических моделях. Date: 2015-07-27; view: 733; Нарушение авторских прав |