Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Закрученные фотоны за пределами оптического диапазона ⇐ ПредыдущаяСтр 3 из 3
Разумеется, для того чтобы быть закрученными, фотоны не обязаны принадлежать оптическому диапазону. Вопрос только в том, как эти закрученные фотоны за пределами оптического диапазона создать. Длинноволновое электромагнитное излучение, например радиоволны, создавать и закручивать несложно. Конечно, про отдельные фотоны тут речи уже не ведется, но для прикладных задач это несущественно. Например, в нашумевшей (даже в российских СМИ) статье New J. Phys. 14, 033001 (2012), в которой сообщалось об использовании закрученных радиоволн для передачи на одной несущей частоте сразу нескольких каналов (разновидность мультиплексирования), закручивание осуществлялось с помощью простейшего устройства — обычной параболической «тарелки», которую разрезали по радиусу, а затем отогнули кромки так, чтоб получился как раз один шаг спирали (рис. 4). Длинные радиоволны тоже несложно закручивать — например, с помощью специально настроенных фаз и мощностей фазированной антенной решетки. Такие эксперименты делались на американской станции HAARP, которая занимается облучением ионосферы радиоволнами и наблюдением за возникающим из-за этого свечением. В 2009 году эта группа исследователей опубликовала статью PRL 102, 065004 (2009), в которой сообщается о накачке ионосферы радиоволнами с ненулевым орбитальным угловым моментом и наблюдением кольцеобразного свечения. А вот уйти в другой конец спектра электромагнитных волн оказалось намного труднее. Стандартные методы закручивания тут уже не работают, и на это есть три причины. Во-первых, чем меньше длина волны, тем мельче должны быть детали той дифракционной решетки или иного устройства, преобразующего плоскую световую волну в закрученную. Во-вторых, все эти устройства должны быть сделаны из материала, который эффективно поглощает или отражает электромагнитные волны. Но для фотонов высокой энергии практически любое вещество становится прозрачным. И наконец, каково бы ни было это закручивающее устройство, падающая на него изначальная электромагнитная волна должна иметь достаточно большой участок ровного волнового фронта. Для фотонов высокой энергии добиться этого тоже непросто. Тут стоит уточнить, что вообще хотят физики, когда говорят о создании закрученного света. Конечно, если вы возьмете узконаправленный луч рентгеновского излучения и просто как-то испортите его поперечный профиль, то плосковолновое излучение превратится в суперпозицию волн со всякими орбитальными угловыми моментами, то есть в том числе и в закрученные волны. Но проблема в том, что вы эти волны не разделите, не сможете получить чистый луч, несущий только определенный угловой момент. Именно получение такого луча и есть тут главная цель. В этой ситуации наиболее перспективными кажутся попытки полностью изменить саму схему излучения закрученных фотонов. Например, в теоретической статье 2007 года было предложено использовать для этой цели спиральный ондулятор. Электронный сгусток высокой энергии не просто летит вперед в таком устройстве, а движется по спиральной траектории под действием магнитов. Из-за постоянного колебания из стороны в сторону электроны излучают электромагнитные волны, спектр которых можно поднять до рентгеновского диапазона. Как показали вычисления, из этого излучения можно извлечь и достаточно яркий пучок закрученного рентгеновского излучения. Дело оставалось за малым — реализовать это предложение на опыте. Для достижения поставленной цели специалистам потребовалось несколько лет на доработку ондулятора специально для этой задачи, и наконец совсем недавно результат был получен. В статье PRL 111, 034801 (2013), вышедшей в июле 2013 года, сообщается об успешном наблюдении закрученного рентгена с энергией фотонов 99 эВ. Таким образом, на шкале электромагнитных волн физика закрученного света шагнула сразу на два порядка вверх по энергии. (Более подробный рассказ об этой работе читайте в новости Закрученный свет шагнул на два порядка вверх по шкале энергий, «Элементы», 27.07.2013.) Можно ли получить еще более высокоэнергетические закрученные фотоны, с энергиями в МэВном или даже в ГэВном диапазонах? Такие фотоны были бы шикарным инструментом исследований в ядерной физике, в физике элементарных частиц, в ускорительной физике. Здесь ситуация пока остается неясной. С одной стороны, два года назад было опубликовано заманчивое предложение использовать эффект обратного комптоновского рассеяния для получения закрученных фотонов аж ГэВных энергий. В идеале, эта схема должна работать так, как показано на (рис. 5). Рис. 5. Предложенная схема получения закрученных фотонов высокой энергии за счет процесса обратного комптоновского рассеяния. Изображение из статьи Eur. Phys. J. C71, 1571 (2011) Предварительно закрученный оптический фотон сталкивается с электроном очень высокой энергии (например, 10 ГэВ), который сам по себе никакой закрутки не несет. Затем происходит процесс обратного комптоновского рассеяния, в результате которого существенная часть энергии электрона передается фотону. Этот процесс на обычных фотонах изучен давным-давно и уже рутинно используется в ряде научных экспериментов. Фотон рассеивается назад, под очень маленькими углами к оси столкновения, а ослабевший электрон можно затем отвести магнитным полем. Если закрученность фотона в этом процессе не изменится, мы в результате получим то, что хотели. Проблема только в том, что закрученность точно сохраняется только при рассеянии строго назад и только при предположении, что электрон остается плосковолновым. При отклонении на небольшой угол возникают разнообразные трудности, и пока неясно, можно ли их будет преодолеть в эксперименте. Тем не менее, даже попытка поставить такой эксперимент будет очень интересной. 4. Закрученные электроны: развитие и перспективы Разумеется, получение закрученных электронов было только первым шагом в этой новой области исследования. В дальнейшем развитие пошло сразу по нескольким направлениям. Во-первых, это совершенствование технологии, то есть демонстрация новых способов получения и управления закрученными электронами, во-вторых, это их использование для экспериментальной проверки новых физических эффектов из области электродинамики и квантовой физики, и в-третьих, использование закрученных электронов как нового инструмента для сугубо прикладных задач. Перечислим только некоторые работы последних лет. Фокусировка. Например, та же бельгийская группа в 2011 году продемонстрировала, что закрученные электроны отлично фокусируются. Их удалось сфокусировать в пятнышко размером чуть больше одного ангстрема, то есть до атомарных размеров! Это сразу открывает возможности для разнообразных практических применений, например для исследования намагниченности ферромагнитных пленок с атомарной точностью. Впрочем, здесь пока есть определенная трудность: надо понять, чем именно закрученность тут может помочь, как именно закрученные электроны позволят прощупать локальное магнитное поле, которое чувствует каждый атом. «Монопольное» закручивание. Другое, совсем недавнее достижение той же группы (май 2013 года) — это реализация еще одного метода производства закрученных электронов, с помощью искусственных магнитных монополей. Настоящие магнитные монополи, конечно, пока в природе не обнаружены и неизвестно даже, разрешены ли они вообще законами физики. Но всегда можно сделать такое микроскопическое устройство, которое будет создавать магнитное поле, очень похожее на поле от магнитного монополя. Этот вариант, кстати, тоже предлагался в теоретической статье 2007 года. Самый простой пример — это «магнитная иголка», длинный и тончайший ферромагнитный стержень, держащий сильное магнитное поле. Именно такую иглу и использовала бельгийская группа; схема эксперимента и электронная микрофотография иглы показаны на (рис. 7). Вблизи одного из его кончиков, на расстояниях много больше толщины, но много меньше длины иглы, магнитное поле будет очень напоминать монопольное. Если иглу выставить поперек оси движения электронов и пропустить сквозь этот кончик электрон, то он превратится в закрученное состояние, причем степень закрутки будет пропорциональна величине магнитного поля. Рис. 7. Получение закрученных электронов с помощью искусственных «магнитных монополей». Вверху: общая идея метода; внизу: электронный снимок магнитной иглы, на конце которой возникало магнитное поле, очень напоминающее монопольное. Элементарные частицы. У этого способа закручивания заряженных частиц есть важное преимущество: с его помощью можно закручивать не только электроны, но и любые другие заряженные частицы, причем любых энергий. Это было бы очень удобно, например, для получения ультрарелятивистских закрученных протонов или электронов, когда никакие дифракционные решетки уже не помогут — они слишком прозрачны для частиц высокой энергии. А если такие частицы удастся создать, то, значит, их можно будет сталкивать друг с другом, и тем самым откроется новый раздел в... экспериментальной физике элементарных частиц! Ведь если у нас появляется совершенно новая характеристика начальных частиц, которой мы можем управлять, то она позволит нам изучать те особенности строения и взаимодействия элементарных частиц, которые обычным способом увидеть трудно или невозможно. Поведение в магнитном поле. У обычного, плосковолнового электрона есть магнитный момент, возникающий из-за его спина и приблизительно равный двум магнетонам Бора. Это приводит к ряду эффектов, связанных со взаимодействием электронов с магнитным полем. Оказывается, закрученность — которая эквивалентна наличию у электрона орбитального магнитного момента — тоже влияет на его магнитный момент, она может его либо почти полностью скомпенсировать, либо усилить. Это было теоретически изучено в статье 2007 года и в последующей статье 2011 года, а затем проверено экспериментально поларморовскому вращению (и невращению!) закрученных электронов в продольном магнитном поле. Заключение Закрученность — это еще одна неотъемлемая, хотя и часто забываемая, характеристика любого волнового процесса. Она сохраняется и в квантовой механике, на уровне отдельных фотонов и электронов. Закрученный свет, закрученные электроны — это вовсе не какие-то «вещи в себе», которые интересуют физиков ради них самих. Это новые инструменты для изучения физических явлений, для установления нетривиальных аналогий, для проверки законов оптики, электродинамики и квантовой механики. Это также потенциальные источники новых прикладных методов исследования и, возможно, новых технологий. Здесь многое еще остается непонятным или нереализованным, но перспективы открываются очень заманчивые.
Список литературы 1. СТО ЮУрГУ 21–2008 Стандарт организации. Система управления качеством образовательных процессов. Курсовая и выпускная квалификационная работа. Требования к содержанию и оформлению / составители: Т.И. Парубочая, Н.В. Сырейщикова, А.Е. Шевелев, Е.В. Шевелева. – Челябинск: Изд-во ЮУрГУ, 2008. – 55 с. 2. Иванов И.П. Закрученный свет и закрученные электроны. «Элементы большой науки». 2013. http://elementy.ru/lib/432009 3. Иванов И.П. Закрученный свет шагнул на два порядка вверх по шкале энергий. «Элементы», 27.07.2013
Date: 2015-07-27; view: 539; Нарушение авторских прав |