Главная
Случайная страница
Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Таинство электронного захвата
Когда говорят об атоме, то со времен Н. Бора перед глазами возникает его планетарная модель атома, в которой шарики-электроны летят по замкнутым орбитам вокруг ядра, а физикам остается только следить, чтобы на длине этих орбит укладывалось целое число длин дебройлевских волн электрона X. И хотя эта модель устарела уже лет через пять после того, как была изобретена, по-другому атом в широких кругах даже высокообразованных читателей мало кто себе представляет. А квантовая механика давно ведь учит, что электрон в атоме не мчится по орбите, а как бы размазан по целой области в нем - орбитали. И невозможно вычислить, в какой точке орбитали он находится в конкретный момент. Можно лишь сосчитать вероятность нахождения электрона в каждой точке. Результаты таких расчетов изображают обычно в виде точек, нанесенных на рисунок. Чем гуще точки в данном месте, тем больше вероятность нахождения там электрона (см. рис. 11.1.) Как же движется электрон, находясь на орбитали в атоме? Квантовая механика принципиально не дает ответа на этот вопрос. Но вместе с тем отрицает, что электрон летит по орбите вокруг ядра атома как планета вокруг Солнца. Действительно, в основном своем S-состоянии на первой боровской орбите атома электрон имеет нулевой орбитальный момент количества движения l, а значит, должен не лететь вокруг ядра, а просто падать на него. Но он почему-то не поглощается ядром, хотя оно имеет положительный электрический заряд, который притягивает отрицательно заряженный электрон. Почему? Квантовая механика не стала решать эти ребусы. Ей хватило соотношения неопределенностей Гейзенберга, которое показывает, что электрон, находящийся в связанном виде в атоме, а потому обязанный обладать кинетической энергией, равной энергии связи (которая в атоме водорода составляет 14эВ), никак не может быть локализован в области с размерами, меньшими радиуса первой боровской орбиты а0.
Рис. 11.1. Электронное облако
А вот профессор Л. Г. Сапогин, о котором мы уже упоминали в разделе 10.3, в той же популярной статье [168] вместе с.новым взглядом на туннельные явления предложил и новое понимание поведения электрона в атомных орбиталях. Он утверждает, что находясь на К - оболочке атома в S - состоянии, электрон совершает квантовые скачки в пределах этой орбитали не беспорядочно, как думали все, а сквозь ядро атома, каждый раз туннелируя через него. Туннелирует благодаря тому, что в это мгновение находится в "нулевой фазе", при которой мгновенные значения массы рис. 11.1. и заряда электрона равны нулю. В этой идее есть что-то привлекательное даже для приверженцев классической механики, которое вслед за Эйнштейном не мирятся с квантовыми скачками. Идя им навстречу, можно предложить следующую полуклассическую модель, являющуюся как бы компромиссным вариантом.
Рис. 11.2.
Забыв пока о дебройлевской длине волны электрона, предположим, что он, оказавшись на расстоянии а 0 от ядра атома водорода -фотона, не имеет орбитального момента, а потому должен падать на ядро, ускорюсь силами его электростатического протяжения. Но ядро, как и сам электрон, обладает еще и магнитным моментом. При пересечении силовых линий магнитного юля ядра падающим электроном на негодействует сила Лоренца, заставляющая злектрон отклониться от прямолинейной траектории и лететь по дуге с ларморовскм радиусом . В результате падающий к ядру электрон не попадет в цепр ядра, а пролетит мимо, лишь слегка зацепив его поверхность (см. рис. 11.2.). На нашем рисунке все это изображено, конечно же нез истинном масштабе, так как радиус первой боровской орбиты а 0 примерно в раз больше диаметра ядра атома (~ Rе), и если бы мы начертили всё в истинных пропорциях, то ядро выглядело бы не кружочком, а точкой, и траектории электрона казались бы не дугами, а прямыми линиями, проходящими через эту точку. Падающий к ядру электрон ускоряется его электрическим полем до околосветовых скоростей. А с увеличением скорости сечение электромагнитных взаимодействий частиц, как известно, уменьшается (частицы не успевают провзаимодействовать.) Поэтому вероятность рассеяния электрона на нуклонах ядра уменьшается, и электрон благополучно проскакивает сквозь ядро. Исследования физиков во второй половине XX века убедительно показали, что нуклоны - отнюдь не монолитные образования, а имеют рыхлую структуру, в отличие от электрона, который представляется точечным. Электроны, ускоренные на ускорителях до почти световых скоростей, пронизывают ядра атомов как пули пену. В нашей модели атома водорода электрон совершает гармонические колебания относительно ядра как шарик на резинке. В точках максимального удаления от ядра (на расстоянии а 0 от него) электрон на мгновение останавливается, чтобы сменить направление движения на противоположное. Появляясь через период своих колебаний, равный /С, в следующей точке поворота, электрон как бы совершает скачок в нее из предыдущей (соседней) точки поворота на боровской орбите, если не принимать во внимание его путешествие с околосветовой скоростью через внутренние области атома. Если успевать разглядеть электрон только в эти мгновения его неподвижности, как кинозритель успевает разглядеть изображение кинокадра на экране лишь в моменты кратковременных остановок кинопленки между ее скачками в киноаппарате, то мы, как в мультипликационном фильме, будем наблюдать картину последовательных перемещений электрона вдоль орбиты, не замечая его путешествий между появлениями в этих точках. Заметить трудно, потому что расстояние между этими соседними точками поворота на орбите составляет всего , что равно комптоновской длине волны электрона . (Не путать с дебройлевской длиной волны, которая обратно пропорциональна кинетической энергии электрона, а потому много длинней и в данном случае равна для S-состояния). Столь густое расположение точек поворота и создает иллюзию непрерывности движения электрона вдоль орбиты даже у сколь угодно внимательного наблюдателя. Получается, что электрон как бы движется по круговой траектории орбиты со скоростью а . Но это иллюзия движения, как иллюзией является движение изображения поезда на экране кинозала. На самом же деле электрон не летит по круговой траектории, а неподвижен в каждой ее точке, однако то и дело срывается с нее к центру атома, чтобы тотчас вернуться в соседнюю точку орбиты. Как иллюзия движения поезда по экрану не создает в кинозале волн воздуха, рассекаемого поездом, так и иллюзия движения электрона по круговым или эллиптическим орбитам в атоме не сопровождается излучением электромагнитных волн. Наверно, поэтому электрон на атомных орбиталях не излучает, что с самого начала удивляло физиков. Заметьте, что в нашей модели электрон, прежде чем оказаться в соседней точке поворота на орбите, успевает побывать в диаметрально противоположной точке орбиты, чтобы остановиться там на мгновение и повернуть обратно. Получается, что электрон почти одновременно присутствует с обоих сторон от ядра атома. Система оказывается электростатически уравновешенной, и атом не имеет электрического дипольного момента, что давно заметили экспериментаторы. Если же учесть еще и квантовые флуктуации окружающего физического вакуума, воздействующие на движение электрона, то в скоростях его прыжков появится какой-то разброс, что заставит электрон останавливаться не точно на орбите, а то чуть дальше, то чуть ближе. Это и объясняет появление точек на рис. 11.1 за окружностью боровской орбиты, то есть размытость траектории. Веским доказательством правильности гипотезы туннелирования электронов атомных орбиталей сквозь ядро атома является то обстоятельство, что орбитали Р- и d -состояний атома имеют вид восьмерок с узловыми точками в ядре атома (см. рис. 11. 3.) Поскольку областями, разрешенными квантовой механикой для пребывания в электрона, являются лишь внутренние области орбиталей, то чтобы попасть из одной ветви "восьмерки" орбитали в другую, электрон должен проскочить сквозь ядро атома. Удивительно, что на это очевидное обстоятельство до сих пор никто из физиков не обратил внимания. Нас же во всем этом интересуют не тонкости движения электрона в атоме и даже
Рис. 11.3. Формы электронных облаков для различных состояний электронов в атомах (полярные диаграммы 2(в квадрате)).
не традиционный вопрос, почему он при своих скачках в пределах орбитали не излучает электромагнитные волны, а то обстоятельство, что электрон атома то и дело пролетает сквозь ядро. Это раскрывает глаза на механизм таинственного К -захвата электрона в атоме ядром. Электронный захват, как известно, заключается в том, что ядра атомов некоторых изотопов химических элементов (особенно тяжелых) каким-то таинственным образом иногда "похищают" электрон с внутренних (К или L) электронных оболочек атома. Физиков давно мучает вопрос, как совершается такое похищение, если электроны в атоме находятся на орбитах очень далеко (по ядерным масштабам) от ядра. А вот если они, как полагает Сапогин, то и дело "ныряют" к ядру, как бы "заигрывая" с ним, то все становится понятным. Ведь нечаянная флуктуация в движениях электрона или ядра может сбить отлаженный ритм этих рискованных трюков, и тогда электрон, вместо того чтобы благополучно вынырнуть из области ядра, оказывается захваченным им. Но "похищенным" оказывается не весь электрон, а только его "шуба" - электрический заряд, который жадно "пожирается" одним из положительно заряженных протонов ядра. А вот "скелет" электрона в виде нейтрино "выплевывается" из ядра. Предполагают, что при этом в ядре идет процесс
(11.1)
который, однако, почему-то никогда не наблюдали в экспериментах по бомбардировке протонов пучками ускоренных электронов, о чем учебники, публикуя формулу (11.1), стыдливо умалчивают. В результате К-захвата один из протонов ядра атома превращается в нейтрон, а суммарный заряд ядра уменьшается на единицу (в единицах заряда протона). Поэтому ядро при К - захвате превращается в ядро атома одного из изотопов химического элемента, стоящего в таблице Менделеева перед исходным химическим элементом. Правда, ядра атомов далеко не всех изотопов могут претерпеть такое превращение. Оно осуществляется только при выполнении существующих в ядерной физике правил отбора и законов сохранения. В частности, сумма масс-энергий исходного ядра и электрона должна быть больше массы - энергии получающегося ядра. При К - захвате электрон превращается в нейтрино. А это слабый, а значит, очень редкий процесс. Поэтому К -захват - обычно редкое явление, характерное в нормальных условиях лишь для некоторых изотопов, масса атома которых, как правило, меньше массы атома стабильного изотопа данного химического элемента. И вообще стабильные изотопы потому стабильны, что ядра их атомов в обычных условиях не способны превращаться в ядра атомов других химических элементов ни в результате электронного захвата, ни в результате каких - либо самопроизвольных распадов. Разность энергий ∆Е, выделяющаяся в ядре атома при превращении его в ядро другого атома во время электронного захвата, распределяется только между двумя частицами - ядром и нейтрино, которые разлетаются друг от друга с противоположно направленными импульсами, равными по абсолютной величине. А поскольку масса-энергия ядра атома намного больше массы-энергии нейтрино, то львиную долю выделяющейся энергии уносит нейтрино (Еv ~ ∆Е.) Энергия же отдачи ядра оказывается до смешного малой [186]:
(11.2)
Например, при известном процессе К-захвата электрона ядром 7В с превращением его в ядро 7Li и излучением нейтрино последнее уносит 0,864 МэВ, а энергия отдачи ядра составляет всего 57,3 эВ [186]. Явление К - захвата обычно сопровождается характерным низкоэнергетичным рентгеновским излучением, возникающим из-за того, что освобождающееся место на К- или L - оболочках атома тотчас занимает электрон, до того находившийся на следующих оболочках в атоме, высвечивая при этом у -квант [186]. Блестящим доказательством правильности нашего понимания процесса электронного захвата является наличие явления внутренней конверсии электронов в атоме. Оно заключается в том, что когда правила отбора запрещают излучение у - кванта возбужденным ядром атома, то возбуждение чаще всего снимается за счет передачи энергии возбуждения ядра электрону оболочки атома. Передаваемая энергия бывает столь высокой (до ~1 МэВ), что электрон выбивается из атома [186]. До сих пор механизм передачи возбуждения от ядра электрону оболочки был загадкой для физиков. Раньше ошибочно полагали, что возбуждение электрону передается у -квантом, излучаемым ядром, но излучение запрещено существующими правилами отбора. Поэтому нам остается только предположить, что возбуждение от ядра электрону оболочки атома передается тогда, когда в соответствии с гипотезой Сапогина этот электрон пронизывает ядро атома.
Date: 2015-07-27; view: 1367; Нарушение авторских прав Понравилась страница? Лайкни для друзей: |
|
|