Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Уровни интерфейсов





7 уровней протоколов:

1. Физический уровень. Хар-ся средой передачи данных – способ связи между устройствами

2. Канальный уровень

3. Сетевой уровень.

4. Транспортный уровень

5. Сеансовый уровень

6. Уровень представления данных

7. Прикладной уровень

- связь встроенной микроконтроллерной системы с системой управления верхнего уровня, например, с персональным компьютером. Чаще всего для этой цели используются интерфейсы RS-232C и RS-485;

- связь с внешними по отношению к МК периферийными ИС, а также с датчиками физических величин с последовательным выходом. Для этих целей используются интерфейсы I2C, SPI, а также нестандартные протоколы обмена;

- интерфейс связи с локальной сетью в мультимикроконтроллерных системах. В системах с числом МК до пяти обычно используются сети на основе интерфейсов I2C, RS-232C и RS-485 с собственными сетевыми протоколами высокого уровня. В более сложных системах все более популярным становится протокол CAN.

С точки зренияорганизации обмена информацией упомянутые типы интерфейсов последовательной связи отличаются режимом передачи данных (синхронный или асинхронный), форматом кадра (число бит в посылке при передаче байта полезной информации) и временными диаграммами сигналов на линиях (уровни сигналов и положение фронтов при переключениях).

Число линий, по которым происходит передача в последовательном коде, обычно равно двум (I2C, RS-232C, RS-485) или трем (SPI, некоторые нестандартные протоколы). Данное обстоятельство позволяет спроектировать модули контроллеров последовательного обмена таким образом, чтобы с их помощью на аппаратном уровне можно было реализовать несколько типов последовательных интерфейсов. При этом режим передачи (синхронный или асинхронный) и формат кадра поддерживаются на уровне логических сигналов, а реальные физические уровни сигналов для каждого интерфейса получают с помощью специальных ИС, которые называют приемопередатчиками, конверторами, трансиверами.

Среди различных типов встроенных контроллеров последовательного обмена, которые входят в состав тех или иных 8-разрядных МК, сложился стандарт «де-факто» — модуль UART (UniversalAsynchronousReceiverandTransmitter). UART — это универсальный асинхронный приемопередатчик. Однако большинство модулей UART, кроме асинхронного режима обмена, способны также реализовать режим синхронной передачи данных.

Не все производители МК используют термин UART для обозначения типа модуля контроллера последовательного обмена. Так, в МК фирмы Motorola модуль асинхронной приемопередачи, который поддерживает те же режимы асинхронного обмена, что и UART, принято называть SCI (SerialCommunicationInterface). Следует отметить, что модуль типа SCI обычно реализует только режим асинхронного обмена, то есть его функциональные возможности уже по сравнению с модулями типа UART. Однако бывают и исключения: под тем же именем SCI в МК МС68НС705В16 скрывается модуль синхронно-асинхронной передачи данных.

Модули типа UART в асинхронном режиме работы позволяют реализовать протокол обмена для интерфейсов RS-232C, RS-422А, RS-485, в синхронном режиме — нестандартные синхронные протоколы обмена, и в некоторых моделях — SPI. В МК фирмы Motorola традиционно предусмотрены два модуля последовательного обмена: модуль SCI с возможностью реализации только протоколов асинхронной приемопередачи для интерфейсов RS-232C, RS-422A, RS-485 и модуль контроллера синхронного интерфейса в стандарте SPI.

Протоколы интерфейсов локальных сетей на основе МК (I2C и CAN) отличает более сложная логика работы. Поэтому контроллеры CAN интерфейса всегда выполняются в виде самостоятельного модуля. Интерфейс I2C с возможностью работы как в ведущем, так и ведомом режиме, также обычно поддерживается специальным модулем (модуль последовательного порта в МК 89С52 фирмы Philips). Но если реализуется только ведомый режим I2C, то в МК PIC16 фирмы Microchip он успешно сочетается с SPI: настройка одного и того же модуля на один из протоколов осуществляется путем инициализации.

В последнее время появилось большое количество МК со встроенными модулями контроллеров CAN и модулями универсального последовательного интерфейса периферийных устройств USB (UniversalSerialBus). Каждый из этих интерфейсов имеет достаточно сложные протоколы обмена, для ознакомления с которыми следует обращаться к специальной литературе.

41. По каким основным принципам организуется обмен между узлами МПС?

42. Системная шина — это набор проводников (металлизированных дорожек на материнской плате), по которым передается информация в виде электрических сигналов.Чем выше тактовая частота системной шины, тем быстрее будет осуществляться передача информации между устройствами и, как следствие, увеличится общая производительность компьютера, т. е. повысится скорость компьютера.

В персональных компьютерах используются системные шины стандартов ISA, EISA, VESA, VLB и PCI. ISA, EISA, VESA и VLB, которые в настоящее время являются устаревшими и не выпускаются на современных материнских платах. Сегодня самой распространенной является шина PCI.

43. Стандартизация интерфейса определяет его структуру, его особенности, и все что с ним связано для дальнейшего упрощения построения таких интерфейсов. Т.е. это некие узнаваемые признаки интерфейсов.

44. Каковы принципы организации передачи данных по системным шинам?

45.Шина адреса служит для определения адреса (номера) устройства, с которым процессор обменивается информацией в данный момент.

Шина данных — это основная шина, которая используется для передачи информационных кодов между всеми устройствами микропроцессорной системы.

Шина управления в отличие от шины адреса и шины данных состоит из отдельных управляющих сигналов. Каждый из этих сигналов во время обмена информацией имеет свою функцию. Некоторые сигналы служат для стробирования передаваемых или принимаемых данных (то есть определяют моменты времени, когда информационный код выставлен на шину данных). Другие управляющие сигналы могут использоваться для подтверждения приема данных, для сброса всех устройств в исходное состояние, для тактирования всех устройств и т.д.

Шина питания предназначена не для пересылки информационных сигналов, а для питания системы. Она состоит из линий питания и общего провода. В микропроцессорной системе может быть один источник питания (чаще +5 В) или несколько источников питания (обычно еще –5 В, +12 В и –12 В). Каждому напряжению питания соответствует своя линия связи. Все устройства подключены к этим линиям параллельно.

46. Примеры интерфейса связи с внешними устройствами.RS-232 (RecommendedStandard 232) - стандарт описывающий интерфейс для последовательной двунаправленной передачи данных между терминалом (DTE, DataTerminalEquipment) и конечным устройством (DCE,DataCircuit-TerminatingEquipment).

 

47. Протокол SPI

Последов. перифер. интерф. для посл. передачи данных. SPI явл-ся синхронным интерф. в котором любая передача синхронизирована с общим тактовым сигналом, генерируемым ведущим устройством (процессором). Принимающая (ведомая) периферия синхронизирует получение битовой последовательности с тактов. сигналом. Ведущее устройство выбирает ведомое для передачи, активируя сигнал «выбор кристалла» на ведомой микросхеме. Периферия, не выбранная процессором, не принимает участия в передаче по SPI. 4 цифр. сигнала: MOSI (MasterOutSlaveIn выход ведущего, вход ведомого –передача данных от ведущ. ведомому), MISO (MasterInSlaveOut вход ведущего, выход ведомого), SCLK (SerialClock тактовый сигнал), CS (ChipSelect выбор микросхемы).

48. Обмен данными между ИМС и микроконтроллерами. Протокол I2C

Шина межмикросхемного управления Inter-IntegratedCircuit Задача – переход от паралл. к последов. передаче данных по двум проводам. В стандартном режиме шина I2C обеспеч. передачу последов. 8-битных данных со скоростью до 100 кбит/с. Для процесса обмена информацией по I2C шине, используется два сигнала: SDA (SerialData – последоват. данные), SCL (SerialClock – сигнал синхронизац.). Каждое устройство на шине I2C распознается по уникальному адресу и может работать как передатчик или приёмник, в зависимости от назначения устройства. Все I2C-устройства подключаются к шине по правилу монтажного «И». В исходн. состоянии оба сигнала SDA и SCL находятся в высоком состоянии. Первые семь битов первого байта образуют адрес ведомого. Восьмой, младший бит, определяет направление пересылки данных. «0» означает, что ведущий будет записыв. информацию в выбранного ведомого. «1» означает, что ведущий будет считывать информац. из ведомого.

 

49. Как выглядит сигнал при передачи данных по UART?

Date: 2015-07-27; view: 1932; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.013 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию