Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Виды дисперсий и правило их сложения
Всякая совокупность, состоящая из значительного числа единиц, может быть расчленена по тому или иному признаку на части, которые называют частными совокупностям или группами. Совокупность, состоящую из нескольких групп, называют общей. Для общей и частной совокупностей могут быть определены средние величины и дисперсии, которые соответственно называются общими и групповыми.
где
х - индивидуальные значения признака; f - число единиц, обладающих данным значением признака;
Общая дисперсия отражает вариацию признака за счет всех условий и причин, действующих в совокупности. Она равна среднему квадрату отклонений отдельных значений признака х от общей средней
Групповая (частная) дисперсия равна среднему квадрату отклонений отдельных значений признака внутри группы от средней арифметической этой группы (групповой средней).
Групповая дисперсия отражает вариацию признака только за счет условий и причин, действующих внутри группы. Средняя из групповых (частных) дисперсий - это средняя взвешенная из групповых дисперсий (или остаточная):
Средняя из групповых дисперсий не равна общей дисперсии, т.к. она не учитывает колеблемости признака между группами. Поскольку групповые средние ( Межгрупповая дисперсия характеризует вариацию результативного признака за счет группировочного признака. Она равна среднему квадрату отклонений групповых средних (
Между общей, средней из групповых и межгрупповой дисперсиями существует следующая зависимость:
Достоверность правила сложения дисперсий покажем на примере.
Имеются следующие данные о выполнении норм выработки рабочими участка:
Для расчета средних величин и дисперсий используем способ «моментов»(см. табл.3).
Таблица 3 Расчетная таблица
Тема: ВЫБОРОЧНОЕ НАБЛЮДЕНИЕ
Date: 2015-07-24; view: 450; Нарушение авторских прав |