Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






И запись его в дифференциальной форме





 

Магнитный поток – это поток вектора магнитной индукции через некоторую поверхность:

(17.7)

Если поверхность замкнута, то

(17.8)

Это математическая запись принципа непрерывности магнитного потока.

Разделим обе части (17.8) на объем V, находящийся внутри замкнутой поверхности s, и найдем предел отношения, когда V стремится к нулю:

(17.9)

Соотношение (17.9) можно трактовать как дифференциальную форму принципа непрерывности магнитного потока. В любой точке магнитного поля нет ни истока, ни стока линий вектора магнитной индукции. Линии вектора нигде не прерываются, они представляют собой замкнутые сами на себя линии.

 

17.4. Скалярный потенциал магнитного поля

 

Вихревыми принято называть поля, в которых ротор векторной величины, описывающей поле, отличен от нуля. Так, для магнитного поля постоянного тока , поэтому во всех точках пространства, где , поле вектора является вихревым. В областях пространства, где J = 0, , магнитное поле можно рассматривать как потенциальное, т.е. как такое поле, каждая точка которого имеет скалярный магнитный потенциал .

(17.10)

Так как , то при ma = const

(17.11)

Скалярный потенциал магнитного поля подчиняется уравнению Лапласа.

Разность скалярных магнитных потенциалов между точками 1 и 2 называют падением магнитного напряжения между точками 1 и 2.

 

17.5. Граничные условия

 

В магнитном поле постоянного тока выполняются следующие граничные условия:

(17.12)

На границе раздела двух однородных и изотропных сред, различных в магнитном отношении (различные m r) равны тангенциальные составляющие векторов напряженности магнитного поля и нормальные составляющие магнитных индукций на границе раздела.

Условие (17.12) не выполняется, если на поверхности раздела двух сред протекает так называемый поверхностный ток. Под ним понимают ток, протекающий по бесконечно тонкому плоскому проводнику, положенному на границе раздела.

 

17.6. Векторный потенциал магнитного поля

 

Векторный потенциал магнитного поля – это векторная величина, плавно изменяющаяся от точки к точке, ротор которой равен магнитной индукции

(17.13)

Основанием для представления индукции в виде ротора от вектора-потенциала служит то, что дивергенция любого ротора тождественно равна нулю, т.е.

Если вектор-потенциал как функция координат известен, то индукцию в любой точке поля определяют путем нахождения ротора от вектора-потенциала в соответствии с (17.13). Векторным потенциалом можно пользоваться и для областей, занятых током.

В электротехнических расчетах векторный потенциал применяют для двух целей:

1. Определения вектора магнитной индукции по формуле (17.13);

2. Определения магнитного потока, пронизывающего какой-либо контур.

Векторный потенциал в произвольной точке поля связан с плотностью тока в этой же точке уравнением Пуассона.

Умножим обе части (17.6) на ma. Если магнитная проницаемость постоянна, то ее можно внести под знак ротора:

; (17.14)

;

;

rot rot A = [ V [ VA ]] = grad div A - V 2 A = m a d.

Так как есть расчетная функция, то в магнитном поле постоянного тока ее можно подчинить требованию:

(17.15)

Это требование означает, что линии вектора есть замкнутые сами на себя линии:

. (17.16)

Уравнение (17.16) представляет собой уравнение Пуассона. В отличие от уравнения (13.21), составленного относительно скалярной величины j, уравнение (17.16) составлено относительно векторной величины . Общее решение по аналогии может быть записано как

(17.17)

Единицей измерения является В×с/м. Формула (17.17) дает общее решение уравнения (17.16). Вектор в любой точке поля можно определить вычислением объемного интеграла (17.17). Последний должен быть взят по всем областям, занятым током. Следует отметить, что взятие интеграла правой части формулы (17.17) сопряжено обычно со значительными математическими выкладками.

 

17.7. Выражение магнитного потока через циркуляцию вектора-потенциала

 

Магнитный поток, пронизывающий какую-либо поверхность:

(17.7)

На основании теоремы Стокса поверхностный интеграл может быть преобразован в линейный

(17.18)

Для определения магнитного потока, пронизывающего некоторую площадь (поверхность) s, необходимо подсчитать циркуляцию вектора потенциала по замкнутому контуру, на который опирается поверхность s.

Определение потока по (17.18) часто имеет преимущества по сравнению с определением потока через магнитную индукцию (17.7). Соотношением (17.7) можно пользоваться в том случае, когда известно значение в любой точке поверхности s, тогда как для вычисления потока с помощью соотношения (17.18) достаточно знать значение на контуре и не требуется значения в точках внутри контура.

Рассмотрим граничные условия для векторного потенциала.

. (17.19)

 

Date: 2015-07-24; view: 382; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию