Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Интегральные теоремыСтр 1 из 4Следующая ⇒
ЛЕКЦИЯ №42
Теоремы Остроградского-Гауса и Стокса применяют при переходе от уравнений поля, записанных в интегральной форме, к уравнениям поля в дифференциальной форме и наоборот.
Таблица 14.1
Теорема Остроградского-Гауса устанавливает соотношение между интегралом дивергенции вектора по объему V и поверхностным интегралом, взятым по замкнутой поверхности s, ограничивающей этот объем . (14.20) При этом поверхность должна быть кусочно-гладкой, а вектор на этой поверхности – непрерывным. Положительной является внешняя нормаль. Теорема Стокса приравнивает поверхностный интеграл ротора вектора к линейному интегралу этого вектора, взятого по замкнутому контуру l, ограничивающему эту поверхность . (14.21) Вектор должен быть непрерывным по всему контуру интегрирования, а контур – кусочно-гладким.
Date: 2015-07-24; view: 221; Нарушение авторских прав |