Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Прямоточный термоядерный двигатель

Во Вселенной больше чем достаточно водорода, так что корабль с таким двигателем мог бы собирать водород — т. е. топливо — по пути, в процессе движения в открытом космосе. По существу, у такого двигателя был бы неистощимый и всегда доступный источник топлива. Собранный водород затем нагревался бы до нескольких миллионов градусов — достаточно для термоядерного синтеза — и высвобождал энергию.

Принцип прямоточного ядерного двигателя предложил в 1960 г. физик Роберт Буссард; позже его популяризацией занимался и Карл Саган. Буссард рассчитал, что прямоточный термоядерный двигатель весом около 1000 т мог бы теоретически поддерживать постоянное ускорение, равное 1 g, т.е. сравнимое с действием земной силы тяжести. Представим, что такое ускорение поддерживается в течение года. За это время корабль разгонится до 77% скорости света; этого уже вполне достаточно, чтобы всерьез рассматривать перспективы межзвездных путешествий.

 

 

28) ЯДЕРНЫЕ РАКЕТНЫЕ ДВИГАТЕЛИ


Один из основных недостатков ракетных двигателей, работающих на жидком топливе, связан с ограниченной скоростью истечения газов. В ЯРД представляется возможным использовать колоссальную энергию, выделяющуюся при разложении ядерного горючего для нагревания рабочего тела. Принцип действия ЯРД почти не отличается от принципа действия термохимических двигателей. Разница заключается в том, что рабочее тело нагревается не за счет собственной химической энергии, а за счет «посторонней» энергии, выделяющейся при внутриядерной реакции. Рабочее тело пропускается через ядерный реактор, в котором происходит реакция деления атомных ядер (например, урана), и при этом нагревается.
У ЯРД отпадает необходимость в окислителе и поэтому может быть использована только одна жидкость. В качестве рабочего тела целесообразно применять вещества, позволяющие двигателю развивать большой удельный импульс тяги. Этому условию наиболее полно удовлетворяет водород, затем следует аммиак, гидразин и вода. Процессы, при которых выделяется ядерная энергия, подразделяют на радиоактивные превращения, реакции деления тяжелых ядер, реакции синтеза легких ядер. Радиоактивные превращения реализуются в так называемых изотопных источниках энергии. Удельная массовая энергия (энергия, которую может выделить вещество массой 1 кг) искусственных радиоактивных изотопов значительно выше, чем химических топлив. Так, для 210Р0 она равна 5 х 108 кДж/кг, в то время как для наиболее энергопроизводительного химического топлива (бериллий с кислородом) это значение не превышает 3 x 104 кДж/кг.
К сожалению, подобные двигатели применять на космических ракетах-носителях пока не рационально. Причина этого - высокая стоимость изотопного вещества и трудности эксплуатации. Ведь изотоп выделяет энергию постоянно, даже при его транспортировке в специальном контейнере, при стоянке ракеты на старте. В ядерных реакторах используется более энергопроизводительное топливо. Так, удельная массовая энергия 235U (делящегося изотопа урана) равна 5 х 109 кДж/кг, т. е. примерно на порядок выше, чем у изотопа 210Р0. Эти двигатели можно «включать» и «выключать», ядерное горючее (233U, 235U, 238U, 239Pu) значительно дешевле изотопного. У таких двигателей могут применяться эффективные рабочие вещества - спирт, аммиак, жидкий водород. Удельный импульс тяги двигателя с водородом около 9000 Н*с/кг.
Простейшая схема ЯРД с реактором, работающим на твердом ядерном горючем, показана на рис.. Рабочее тело помещено в баке. Насос подает его в камеру двигателя. Распыляясь с помощью форсунок, рабочее тело вступает в контакт с тепловыделяющим ядерным горючим, нагревается, расширяется и с большой скоростью выбрасывается через сопло наружу. Ядерное горючее по запасу энергии превосходит любой другой вид топлива. Так почему же установки на этом горючем имеют сравнительно небольшую удельную тягу и большую массу? Дело в том, что удельная тяга твердофазного ЯРД ограничена температурой делящегося вещества, а энергетическая установка при работе испускает сильное ионизирующее излучение, оказывающее вредное действие на живые организмы и материалы.

 

ЯДЕРНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ


В земных условиях атомный реактор, являющийся главной частью атомных электростанций, окружают толстыми бетонными стенами. Конечно, такой вид защиты не пригоден на космических летательных аппаратах (КЛА). Какая же защита экипажа от проникающей радиации, возникающей при работе атомного реактора, возможна на КЛА? По-видимому, ядерная энергетическая установка во время работы должна находиться не на борту, а на некотором расстоянии от аппарата. При такой схеме нейтроны и гамма-лучи будут рассеиваться в космическом пространстве, минуя корпус КЛА, но все же какая-то часть излучения будет попадать в помещение, где находятся люди, и от нее также нужна защита в виде экранов из металлических пластин. Но толщина - это масса, а увеличение массы для космических объектов очень нежелательно.
Экраном, защищающим человека от потока заряженных частиц и гамма-лучей, может служить свинец. Взаимодействуя с атомами свинца, эти излучения быстро поглощаются, но для нейтронов даже толстые свинцовые стены не преграда. Эти частицы хорошо замедляются в водородосодержашей среде и очень сильно поглощаются ядрами атомов некоторых элементов: кадмия, гафния, гадолиния. Тонкая пластинка из этих металлов, установленная после водородосодержащего экрана, преграждает путь почти всем нейтронам. Практические разработки ЯРД, использующих твердое ядерное горючее, были начаты в середине 50-х годов, т. е. одновременно с введением в строй первых атомных электростанций.
Существуют и более экзотические проекты ядерных ракетных двигателей, в которых делящееся вещество находится в жидком, газообразном или даже в плазменном состоянии, однако реализация подобных логически возможных конструкций при современном уровне техники встречает значительные трудности.

 

29) Космические двигатели на антиматерии новости
Космические двигатели на антивеществе куда ближе, чем принято думать. Они могут быть сравнительно недорогими и безопасными. Главное – выбрать оптимальный вариант конструкции. Ведь тут исследованы далеко не все возможные схемы. Так считает маленькая компания из Санта-Фе. Корабль с двигателем на позитронах мог бы выглядеть так (иллюстрация NASA). Используя двигатель на антиматерии, лёгкий пилотируемый корабль мог бы достичь Марса за 45-90 дней, вместо примерно полугода с химическими двигателями и сотнями тонн топлива или ионными двигателями, питаемыми солнечными батареями, величиной с пару футбольных полей. Это впечатляет, но насколько двигатели на антивеществе могут быть реальны, с точки зрения техники сегодняшнего дня? Институт перспективных концепций аэрокосмического агентства США (NIAC) финансирует небольшую американскую компаниюPositronicsResearch, которая уже не первый год занимается разработкой и постройкой опытных устройств для работы с антиматерией, всевозможных магнитных ловушек, в частности. Недавно компания представила две новые концепции космических двигателей на антиматерии, отличающиеся от ранее известных схем. Напомним, античастицы похожи на своих обычных "родственников", но несут противоположный заряд. "антиблизнец" электрона – позитрон, заряжен положительно, а "антивариант" протона — антипротон – отрицательно. При столкновении материи и антиматерии высвобождается огромное количество энергии в виде излучения, в соответствии со знаменитой формулой Эйнштейна (E = mc2). И это значит, что долей грамма антивещества по заложенной в нём энергетике хватило бы для путешествия корабля к Марсу. Проблем, если упрощать, всего две: хранение антиматерии на борту и рациональный способ использования её огромной энергии. Новый взгляд на эти задачи и предлагает PositronicsResearch. Главная идея: эта компания считает, что топливом для кораблей будущего должны стать позитроны, а не антипротоны или какие-нибудь ядра антигелия, как предлагалось ранее. Выбор этот обоснован так. При реакции аннигиляции материи и антиматерии рождаются гамма-лучи высокой энергии, что в случае пилотируемого аппарата влечёт за собой включение в конструкцию тяжелейшей защиты. От таких лучей не только сложно защищаться, их и использовать-то для привода корабля – затруднительно. То есть, значительная часть энергии будет улетать прочь. Аннигиляция позитронов рождает гамма излучение с энергией примерно в 400 раз меньшей. И это хорошо с самых разных точек зрения. Схема ракетного двигателя типа "Позитронный реактор". Первый вариант своего двигателя авторы назвали "Позитронный реактор" (Positronreactor). Предполагается, что энное количество позитронов (сотые доли грамма) было бы наработано на земных установках и помещено в большое число миниатюрных магнитных капсул-ловушек. Капсулы эти по очереди, но с большой частотой, направляют в центр реактора, наполненного специальным теплообменником – матрицей. В центре реактора ловушку выключают, позитроны взаимодействуют с её веществом и дают вспышку излучения, нагревающего матрицу. Через матрицу пропускают водород, который разогревается и с большой скоростью истекает из сопла двигателя. Часть горячего водорода отводится для привода насоса, а холодный водород из бака, прежде чем попасть в реактор, проходит через двойные стенки сопла – для его охлаждения. Позитронный реактор мог бы дать удельный импульс в 900 секунд, сообщают исследователи. То есть, на каждый грамм израсходованного за секунду рабочего тела (водорода) он дал бы 900 граммов тяги. Это примерно в 2-3 раза выше, чем у химических двигателей. Что означает аналогичное уменьшение необходимого для полёта, например, к Марсу топлива, снижение общего веса корабля, а значит – снижение необходимой для его разгона силы тяги. Заметим, ионные двигатели дают намного больший удельный импульс, но требуют мощного источника электрической энергии извне: или от чудовищно-гигантских солнечных панелей, или – от небольшой атомной электростанции на борту. Позитронный же реактор энергетически вполне самодостаточен и технически сравнительно прост. И в этом его колоссальное преимущество перед ионниками. К тому же, на данном принципе ничто не мешает создать мощный позитронный привод, способный вывести корабль на околоземную орбиту. А ионники на это неспособны, они хороши лишь для межпланетных перелётов. Что до гипотетических маленьких капсул с ловушками для позитронов – такими вещами как раз и занимается сейчас компания из города Санта-Фе в штате Нью-Мексико. Так будет выглядеть полёт корабля с "Абляционным позитронным двигателем". Второй вариант привода назван "Абляционный позитронный двигатель" (Ablativepositronengine). Капсулы с магнитными ловушками, в которых хранятся позитроны, здесь ещё покрыты слоем свинца. Аннигилируют капсулы в широком сопле двигателя. Но зачем свинец? Он поглощает мощную гамма-радиацию от аннигиляции и переизлучает этот поток энергии в виде рентгеновских лучей. Рентгеновские же лучи, в отличие от гамма-радиации, очень хорошо поглощаются тончайшим слоем специального покрытия сопла. Эти слои в двигателе постепенно испаряются и дают тягу. Расчётный удельный импульс абляционного позитронного привода составляет 5 тысяч секунд. "Самое существенное преимущество этих схем – безопасность", — говорит физик из Йельского университета (YaleUniversity), один из лидеров компании PositronicsResearch, Джеральд Смит (GeraldSmith). Данные установки не производят высокоактивных отходов, как, к примеру, атомные реакторы, что снимает вопрос об утилизации такого корабля. В случае несчастья на старте (если по какой-то немыслимой причине отключатся все капсулы-ловушки) такой корабль не выбросит в атмосферу радиоактивных веществ. Будет лишь короткая гамма-вспышка и взрыв, вполне сравнимый по силе со взрывом обычной химической ракеты. Так что зона безопасности вокруг старта может составлять всего километр. "По грубой оценке, чтобы произвести 10 миллиграммов позитронов, необходимых для пилотируемой марсианской миссии, нужно приблизительно $250 миллионов; с использованием технологии, которая в настоящее время развивается, — заявил мистер Смит. – Основываясь на опыте ядерной технологии, кажется разумным ожидать, что стоимость производства позитронов снизится с большим количеством исследований". Вместе со сравнительной простотой позитронного привода эти цифры означают, что полёты на антиматерии – куда ближе к реальности, чем полагали многие ещё недавно. Не зря NIAC выделил PositronicsResearch средства на подробное изучение и отработку этой технологии. Напомним, ранее американцы уже показывали эскизы ряда космических двигателей на антиматерии, однако, там применялись антипротоны, причём не столько для создания тяги непосредственно, сколько для катализа ядерных и термоядерных реакций. Пусть удельный импульс тех "гибридов" был бы существенно выше позитронного аппарата, но зато сложность и практическая реализуемость (в обозримом будущем) – явно ниже. Если специалисты из PositronicsResearch будут быстро продвигаться в данном исследовании, может оказаться, что к первым пилотируемым полётам на Марс позитронный привод дойдёт до стадии опытных образцов. пока что использование антиматерии в качестве топлива космических аппаратов столь же затруднительно как и ядерного топлива и в том и другом случае агромным минусом является то что нужно делать мощную радиационную защиту экипажа, которая будет иметь мягко выражаясь не малый вес основные пути решения: 1) делать эту самую защиту, 2)не допускать возникновения радиации 3) двигатель иного принципа действия 2й путь а как следствие - 3й более перспективный
 
   
 

 

Начало формы

Конец формы

 

Date: 2015-07-22; view: 472; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию