Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Зависимость от температуры





Магнитная восприимчивость большинства веществ (за исключением большей части диамагнетиков и некоторых парамагнетиков — щелочных и, в меньшей степени, щёлочноземельных металлов) обычно зависит от температуры вещества. У парамагнетиков магнитная восприимчивость уменьшается с температурой, подчиняясь закону Кюри — Вейса. У ферромагнетиков магнитная восприимчивость с ростом температуры увеличивается, достигая резкого максимума вблизи точки Кюри (см. эффект Гопкинса).

Магнитная восприимчивость антиферромагнетиков увеличивается с ростом температуры до точки Нееля, а затем падает по закону Кюри — Вейса.[2]

Магнитная восприимчивость почв

Магнитная воприимчивость почв зависит от соотношения в ней диа-, пара-, и ферромагнетиков. Она возрастает в почвах, богатых окристаллизованными оксидами железа (что характерно в верхних горизонтах почв аридных районов), резко снижена в оглееных почвах и органических горизонтах, обыкновенно снижается при возрастании выветрелости первичных пород.

Атомная (молярная) магнитная восприимчивость некоторых диамагнетиков и парамагнетиков (при нормальных условиях)*

* Данные приведены для СГС системы единиц

 

 

5) Анизотропия магнитной восприимчивости

http://dic.academic.ru/dic.nsf/bse/105445/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%B0%D1%8F

Советую лучше лекции посмотреть по поводу анизотропии. Там про три оси есть, их соотношения и какие виды анизотропии для каких тел. Для даек, структур течения, вытянутый эллипс намагниченностей. Сплюснутый для кого, не помню.

 

Магнитная анизотропия- неодинаковость магнитных свойств тел по различным направлениям. Причина М. а. заключается в анизотропном характере магнитного взаимодействия между атомными носителями магнитного момента в веществах. В изотропных газах, жидкостях, поликристаллических твёрдых телах М. а. в макромасштабе не проявляется. Напротив, в монокристаллах М. а. приводит к большим наблюдаемым эффектам, например к различию величины магнитной восприимчивости парамагнетиков вдоль различных направлений в кристалле. Особенно велика М. а. в монокристаллах ферромагнетиков, где она проявляется в наличии осей лёгкого намагничивания (См. Ось лёгкого намагничивания), вдоль которых направлены векторы самопроизвольной намагниченности Js ферромагнитных доменов (См. Домены). Мерой М. а. для данного направления в кристалле является работа намагничивания внешнего магнитного поля, необходимая для поворота вектора Js из положения вдоль оси наиболее лёгкого намагничивания в новое положение — вдоль внешнего поля. Эта работа при постоянной температуре определяет свободную энергию (См. Свободная энергия) М. а. Faн для данного направления (см. Ферромагнетизм). Зависимость Faн от ориентации Js в кристалле определяется из соображений симметрии. Например, для кубических кристаллов:

где α1, α2, α3— направляющие косинусы Js относительно осей кристалла [100] (рис.), K1 — первая константа естественной кристаллографической М. а. Величина и знак её определяются атомной структурой вещества, а также зависят от температуры, давления и т.п. Например, в железе при комнатной температуре K1 Магнитная анизотропия 105 эрг/см3 (104 дж/м3), а в никеле K1 Магнитная анизотропия —104 эрг/см3 (—103 дж/м3). С ростом температуры эти величины уменьшаются, стремясь к нулю в Кюри точке (См. Кюри точка). У антиферромагнетиков, ввиду наличия у них не менее двух магнитных подрешёток (J1 и J2), имеется, по крайней мере, две константы М. а. Для одноосного антиферромагнитного кристалла Fан записывается в виде

(z — направление оси М. а.). Значения констант а и b того же порядка, что и у ферромагнетиков. У антиферромагнетиков наблюдается большая анизотропия магнитной восприимчивости (См. Магнитная восприимчивость) χ; вдоль оси лёгкого намагничивания χ стремится с понижением температуры к нулю, а в перпендикулярном к оси направлении (ниже Нееля точки (См. Нееля точка)) χ не зависит от температуры.

Экспериментально константы М. а. могут быть определены из сопоставления значений энергии М. а. для различных кристаллографических направлений. Другой метод определения констант М. а. сводится к измерению моментов вращения, действующих на диски из ферромагнитных монокристаллов во внешнем поле (см. Анизометр магнитный), так как эти моменты пропорциональны константам М. а. Наконец, эти константы можно определить графически по площади, ограниченной кривыми намагничивания ферромагнитных кристаллов и осью намагниченности, ибо эта площадь также пропорциональна константам М. а. Значения констант М. а. могут быть определены также из данных по электронному парамагнитному резонансу (См. Электронный парамагнитный резонанс) (для парамагнетиков), по ферромагнитному резонансу (См. Ферромагнитный резонанс) (для ферромагнетиков) и по антиферромагнитному резонансу (См. Антиферромагнитный резонанс) (для антиферромагнетиков). Вследствие магнитострикции (См. Магнитострикция) в магнетиках наряду с естественной кристаллографической М. а. наблюдается также магнитоупругая анизотропия, которая возникает при наложении на образец внешних односторонних напряжений. В поликристаллах, при наличии в них текстуры магнитной (См. Текстура магнитная) или текстуры (См. Текстура) кристаллографической, также проявляется М. а.

Магнитная анизотропия кубических монокристаллов железа. Приведены кривые намагничивания для трёх главных кристаллографических осей [100], [110] и [111] ячейки кристалла железа; J — намагниченность, Н — напряжённость намагничивающего поля.

 

http://www.mining-enc.ru/m/magnitnye-svojstva/

 

Различие магнитных свойств по разным направлениям породы определяется кристаллографической анизотропией ферромагнитных минералов, текстурой, неизометричностью формы зёрен, линейным или послойным их распределением. Наибольшей магнитной анизотропией обладают метаморфические горные породы — сланцы, гнейсы, у которых отношение kмaкc/kмин достигает 1,5-2,0 и более. Измерения магнитных свойств ведутся магнитомеханическими или индукционными методами. Магнитомеханический метод основан на измерении отклонения под воздействием магнитного поля образца и применяется для измерения остаточной намагниченности и восприимчивости образцов горных пород (MA-21, МАЛ-036, ЛАМ-3 и др.). Индукционным методом (магнитное поле движущегося образца создаёт в катушке эдс индукции) измеряют различные виды намагниченности (рокгенераторы), точки Кюри (прибор с нагревом образца), восприимчивость (ИМВ-2). Чувствительность этих приборов до 10-5 А/м. Используются также сверхпроводящие квантовые интерферометры (точность измерения 10-7 А/м).

 

http://avspir.narod.ru/geo/khain1995/hain_9_4.htm

Date: 2015-07-22; view: 1179; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию