Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Химико-термическая обработка





 

Методы химико-термической обработки металлов являются одними из важнейших направлений изменения свойств поверхности, обеспечивая поверхностное упрочнение металлов и сплавов (повышение поверхностной твердости, износостойкости, усталостной прочности, теплостойкости и т.д.), а также повышение стойкости металлов и сплавов против воздействия внешних агрессивных сред при нормальных и повышенных температурах (коррозионной стойкости в атмосферных условиях, стойкости к кавитационной эрозии, кислотостойкости, жаростойкости, окалиностойкости и т.д.).

Методы химико-термической обработки включают две крупные группы диффузионных покрытий. Первая группа включает насыщение поверхности металлических изделий неметаллами, а также удаление неметаллов из поверхности. Такими неметаллами являются: углерод, азот, бор, водород, сера. В этой связи способы химико-термической обработки металлов и сплавов получили названия: науглероживание (цементация), азотирование, борирование, сульфидирование. Удаление неметаллов происходит при обезуглероживании, обезводороживании, деазотировании.

Насыщение может проводиться одним неметаллом, комплексно двумя или тремя неметаллами. Такими процессами являются: углеродоазотирование (низкотемпературное цианирование, низкотемпературная нитроцементация); азотонауглероживание (цианирование, нитроцементация); сульфоцианирование.

Вторая группа процессов включает насыщение металлами и удаление металлов из поверхности.

Такими процессами являются: алитирование (насыщение алюминием), хромирование (диффузионное насыщение хромом), силицирование (насыщение поверхности кремнием). Насыщение возможно любых металлических материалов любыми другими металлическими веществами, в том числе, например, его можно проводить титаном, ванадием, цинком, молибденом и другими элементами. Применяют покрытия двумя или тремя металлами, а также комплексно металлами и неметаллами одновременно или последовательно. В качестве примеров можно привести хромосилицирование, хромованадирование, карбохромирование и т.д. Примером удаления металлов можно назвать обесцинкование.

Насыщение проводят путем нагрева обрабатываемых изделий в химически активной среде, содержащей насыщающий компонент. При этом нагрев ведут до температур, обеспечивающих развитие:

образование во внешней среде насыщающего вещества в виде легкоразлагающегося соединения или его атомарной формы;

адсорбирование поверхностью активного насыщающего вещества;

образование устойчивых межатомных связей между атомами насыщающего вещества и материала изделия с образованием твердых растворов, химических соединений, диффузии атомов в слое и развитие в нем фазовых и структурных преобразований, обеспечивающих достижение требуемого эффекта от насыщаемого изделия.

Технологические параметры конкретных процессов определяются на основе анализа соответствующих диаграмм фазового равновесия между взаимодействующими компонентами.

Цементация стали

Цементации обычно подвергают углеродистые и легированные стали с малым содержанием углерода (как правило, не более 0,20 - 0,25%). Примерами цементуемых сталей являются: 10, 15, 20, Ст.3, 20Х, 20ХН, 12ХН3А, 20Х2Н4А и др. Отдельную группу мелкозернистых легированных сталей для цементации составляют стали типа 18ХГТ, 25ХНТЦ и др. После цементации и окончательной термической обработки, заключающейся в закалке и низком отпуске, обеспечивается получение поверхностной твердости 56 – 64 НRС при сохранении вязкой сердцевины, что определяет высокую конструктивную прочность изделий, благоприятное сочетание износостойкости поверхности с высокой сопротивляемостью динамическим разрушениям.

Температурой цементации является 900 – 950 °С, хотя интенсивность насыщения непрерывно растет и при более высоких температурах до1147 °С. Однако такие температуры не применяются в связи с опасностью сильного роста зерна стали и нетехнологичностью процесса (низкая стойкость печного оборудования, нагревателей и технологической оснастки).

Цементацию проводят в твердом карбюризаторе, в газовых средах и иногда в расплавах солей (жидкостная цементация). Твердый карбюризатор для цементации - это гранулированный древесный уголь или полукокс, пропитанные углекислыми солями бария или натрия. Детали упаковывают в стальные ящики с карбюризатором, закрывают крышкой и для герметизации обмазывают огнеупорной глиной. Цементация в твердом карбюризаторе идет за счет неполного горения угля в герметически закрытом ящике, в котором, кроме угля и насыщаемых деталей, имеется некоторое количество кислорода из атмосферного воздуха. Неполное горение угля проходит по реакции:

2С + О = 2СО

Образовавшиеся молекулы окиси углерода являются неустойчивыми химическими соединениями, которые на металлической поверхности (железа) разлагаются, как на катализаторе, с выделением атомарного углерода:

2СО ® С + СО2

 

Углекислые соли бария и натрия являются своеобразными катализаторами процесса цементации в твердом карбюризаторе, поскольку они обеспечивают образование дополнительного количества окислителя при своем разложении при нагреве.

При газовой цементации в качестве карбюризаторов используют углеводородные газы, которые разлагаются в печи с образованием атомарного углерода и водорода:

СН4 ® С + 2Н2

 

Атомарный углерод адсорбируется поверхностью сначала по механизму физической адсорбции, а затем - химической, в результате чего атомы углерода входят в кристаллическую решетку железа с образованием твердого раствора (аустенита). Слой нарастает во времени: при цементации в твердом карбюризаторе по 0,1 мм/час, при газовой 0,12- 0,15 мм/час.

Концентрация углерода в поверхностном слое возрастает до предельно возможной при температуре насыщения, что определяется диаграммой фазового равновесия (см. диаграммы железо-углерод, рис.4.2, 4.3). При медленном охлаждении с температуры цементации в поверхностном слое образуется структура, соответствующая высокоуглеродистой (заэвтектоидной, эвтектоидной и доэвтектоидной) стали с плавным переходом к сердцевине. Слой с такой структурой еще не обладает высокой твердостью и износостойкостью. Для создания этих качеств требуется окончательная термическая обработка, заключающаяся в закалке с низкотемпературным отпуском.

Существует несколько вариантов технологии окончательной термической обработки после цементации. Стали, склонные к росту зерна после цементации подвергают промежуточной закалке или нормализации с нагревом до температур 850 - 880 ˚С для измельчения зерна сердцевины деталей, с последующим нагревом под окончательную закалку до температуры 760 - 780 ˚С. Среда охлаждения при закалке определяется маркой стали. Углеродистые стали охлаждают в воде, легированные - в масле. Стали, не склонные к росту зерна при цементации (18ХГТ, 25ХГТ и др.) подвергают непосредственной ступенчатой закалке с подстуживанием. После окончательной закалки отпуск проводят при температуре 160 - 200 ˚С.

Азотирование стали

Азотирование - поверхностное насыщение стали азотом, применяется, как и цементация, преимущественно для повышения поверхностной твердости, износостойкости деталей машин и механизмов.

Кроме того, азотирование обеспечивает повышение коррозионной стойкости материала, а также обеспечивает теплостойкость упрочненного поверхностного слоя, не разупрочняющегося при нагревах до температур 500 – 600 °С. Характер упрочнения в результате азотирования принципиально иной по сравнению с цементацией. Высокая твердость и износостойкость слоя достигается в результате образования сплошной нитридной зоны слоя на внешней поверхности изделия, а частичное упрочнение в переходной зоне за счет образования большого количества высокодисперсных очень твердых нитридов легирующих элементов, содержащихся в составе стали.

Для повышения коррозионной стойкости азотированию подвергают углеродистые стали. Для повышения поверхностной твердости и износостойкости используют комплексно легированные стали, содержащие хром, молибден, алюминий и другие компоненты. Примерами таких сталей являются: 38ХМЮА, 38ХЮА, 34ХН1М и др. Азотированию подвергают наиболее ответственные детали: гильзы цилиндров двигателей внутреннего сгорания, шестерни, детали топливной аппаратуры. Азотированию также подвергают нержавеющие стали ферритного или аустенитного класса: 30Х13, 40Х13, 40Х14Н14В2М и др.

После азотирования не требуется проведения какой-либо термической и механической обработки. Изделия после азотирования сразу подаются на сборку. Размеры изделий при азотировании не изменяются, поэтому азотированию подвергаются готовые детали без припусков на окончательную механическую обработку. В этой же связи, свойства, которыми должна обладать сердцевина изделия, должны быть сформированы до азотирования. Поэтому заготовки для изготовления азотируемых деталей подвергают предварительной термической обработке (улучшению), включающей закалку и высокотемпературный отпуск.

Газовой средой для азотирования является аммиак, который при нагреве диссоциирует на составные части по реакции: 2 NH3 ® 2 N + 3 H2

Образующийся атомарный азот адсорбируется поверхностью, диффундирует вглубь изделия, и взаимодействует с компонентами стали (железом, хромом, молибденом, алюминием и др.) с образованием нитридов.

Азотирование для повышения износостойкости легированных сталей проводят при температуре 500 – 560 °С с выдержками от 25 до 60 часов из расчета, что 0,01 мм слоя прирастает за 1 ч выдержки. Для сталей аустенитного класса длительность выдержки удваивается.

Структура слоя содержит 2 структурные зоны: внешняя нитридная (e и g¢) и подслой (переходная зона), представляющая собой зону азотистого феррита с выделением по границам зерен прожилок третичных нитридов. Упрочнение поверхности обеспечивает только нитридная зона слоя.

Методы совместного насыщения азотом и углеродом

Совместное насыщение поверхности деталей азотом и углеродом предусматривает возможность реализации двух принципиально различающихся способов в зависимости от того, какой из этих элементов является основным, а какой дополнительным.

Высокотемпературные процессы совместного насыщения напоминают по развивающимся процессам цементацию. В них насыщение идет преимущественно углеродом и в меньшей степени – азотом. Такие процессы по действующей классификации называют азотонауглероживанием.

Однако этот термин на практике не прижился. Технологии этого типа называют чаще высокотемпературным цианированием (если процесс ведется в расплавах солей, содержащих до 20 – 25 % цианистого натрия), или нитроцементацией (если проводится насыщение в газовых средах аналогично газовой цементации с дополнительной подачей в печь некоторого количества аммиака). Цианирование и нитроцементация обеспечивают получение слоя, аналогичного получаемому при цементации. Азот увеличивает прочностные свойства слоя, его износостойкость. Режимы обработки после насыщения практически совпадают с аналогичными режимами обработки после цементации.

Температура нитроцементации или цианирования составляет 870 – 900 °С, т.е. на 30 °С ниже, чем цементации. Совместное насыщение углеродом и азотом происходит несколько быстрее, чем только углеродом, в связи с чем, длительность нитроцементации оказывается меньше, чем газовой цементации. Скорость роста слоя составляет 0,20 - 0,25 мм/ч.

Низкотемпературные процессы совместного насыщения азотом и углеродом имеют механизм, соответствующий насыщению азотом. Температура углеродоазотирования (низкотемпературного цианирования) такая же, как и при азотировании. В этом случае и природа формирующегося слоя также аналогична азотированному слою, однако дополнительная диффузия углерода в слой приводит к образованию карбонитридов вместо нитридов, что повышает прочность слоя и несколько уменьшает его хрупкость.

Основное применение низкотемпературного цианирования – дополнительное упрочнение режущего и штампового инструмента, изготовленного из быстрорежущих и других теплостойких сталей. Инструменты после окончательной термической обработки на максимальную твердость и после шлифовки и заточки насыщают при температуре 540 – 560 °С в течение 2 – 4 ч. При этом формируется тонкий (0,04 - 0,09 мм) карбонитридный слой высокой твердости и износостойкости, увеличивающий режущую стойкость инструмента в 1,5 - 2,0 раза. Термообработки после насыщения, как и после азотирования, не требуется.

Комплексное насыщение тремя неметаллами одновременно: азотом, углеродом и серой получило название сульфоцианирование. Этот процесс используется для обеспечения особого комплекса свойств поверхностей, работающих в условиях сухого трения (без смазки) при высоких удельных давлениях. В этих условиях кроме высокой износостойкости, поверхности должны обладать хорошей прирабатываемостью друг к другу при трении, и не образовывать «задиры» на поверхности. Примерами деталей, подлежащих сульфоцианированию, являются диски тормозов, тяжело нагруженные подшипники скольжения и др. Процесс ведется в жидких (солевых) или твердых средах (карбюризаторах), в которые, кроме углеродсодержащих, азотсодержащих веществ вводят сульфид железа или небольшие добавки элементарной серы. Температура процесса от 500 до 680 °С, время выдержки 5–6ч.

Формируется слой, аналогичный нитроцементованному, общей глубиной 0,05 - 0,07 мм. Внешняя зона - сульфидная, хрупкая, глубиной 0,01 - 0,02 мм с содержанием серы до 2%.

Date: 2015-07-11; view: 584; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию