Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Методы исследований в металловедении и материаловедении





 

Основными методами исследования в металловедении и материаловедении являются:

1. Излом - самый простой и доступный способ оценки внутреннего строения металлов. Метод оценки изломов, несмотря на свою кажущуюся грубость оценки качества материала, применяется довольно широко в различных отраслях производства и научных исследований. Оценка излома во многих случаях может характеризовать качество материала.

Излом может быть кристаллическим или аморфным. Аморфный излом характерен для материалов, не имеющего кристаллического строения, таких как стекло, канифоль, стекловидные шлаки.

Металлические сплавы, в том числе сталь, чугун, алюминиевые, магниевые сплавы, цинк и его сплавы дают зернистый, кристаллический излом.

Каждая грань кристаллического излома является плоскостью скалывания отдельного зерна. Поэтому излом показывает нам размеры зерна металла. Изучая излом стали, можно видеть, что размер зерна может колебаться в очень широких пределах: от нескольких сантиметров в литой, медленно остывшей, стали до тысячных долей миллиметра в правильно откованной и закаленной стали. В зависимости от размера зерна, излом может быть крупнокристаллический и мелкокристаллический. Обычно мелкокристаллический излом соответствует более высокому качеству металлического сплава.

В случае если разрушение исследуемого образца проходит с предшествующей пластической деформацией, зерна в плоскости излома деформируются, и излом уже не отражает внутреннего кристаллического строения металла; в этом случае излом называется волокнистым. Часто в одном образце в зависимости от уровня его пластичности, в изломе могут быть волокнистые и кристаллические участки. Часто по соотношению площади излома, занятого и кристаллическими участками при данных условиях испытания оценивают качество металла.

Хрупкий кристаллический излом может получаться при разрушении по границам зерен или по плоскостям скольжения, пересекающим зерна. В первом случае излом называется межкристаллитным, во втором транскристаллитным. Иногда, особенно при очень мелком зерне, трудно определить природу излома. В этом случае излом изучают с помощью лупы или бинокулярного микроскопа.

В последнее время развивается отрасль металловедения по фрактографическому изучению изломов на металлографических и электронных микроскопах. При этом находят новые достоинства старого метода исследований в металловедении - исследований излома, применяя к таким исследованиям понятия фрактальных размерностей.

2. Макроструктура - является следующим методом исследования металлов. Макроструктурное исследование заключается в изучении плоскости сечения изделия или образца в продольном, поперечном или любых иных направлениях после травления, без применения увеличительных приборов или при помощи лупы. Достоинством макроструктурного исследования является то обстоятельство, что с помощью этого метода можно изучить структуру непосредственно целой отливки или слитка, поковки, штамповки и т.д. С помощью этого метода исследования можно обнаружить внутренние пороки металла: пузыри, пустоты, трещины, шлаковые включения, исследовать кристаллическое строение отливки, изучать неоднородность кристаллизации слитка и его химическую неоднородность (ликвацию).

С помощью серных отпечатков макрошлифов на фотобумаге по Бауману определяется неравномерность распределения серы по сечению слитков. Большое значение этот метод исследования имеет при исследовании кованых или штампованных заготовок для определения правильности направления волокон в металле.

3. Микроструктура - один из основных методов в металловедении - это исследование микроструктуры металла на металлографических и электронных микроскопах.

Этот метод позволяет изучать микроструктуру металлических объектов с большими увеличениями: от 50 до 2000 раз на оптическом металлографическом микроскопе и от 2 до 200 тыс. раз на электронном микроскопе. Исследование микроструктуры производится на полированных шлифах. На нетравленых шлифах изучается наличие неметаллических включений, таких как оксиды, сульфиды, мелкие шлаковые включения и другие включения, резко отличающиеся от природы основного металла.

Микроструктура металлов и сплавов изучается на травленых шлифах. Травление обычно производится слабыми кислотами, щелочами или другими растворами, в зависимости от природы металла шлифа. Действие травления заключается в том, что он по-разному растворяет различные структурные составляющие, окрашивая их в разные тона или цвета. Границы зерен, отличающиеся от основного раствора имеют травимость обычно отличающуюся от основы и выделяется на шлифе в виде темных или светлых линий.

Видимые под микроскопом полиэдры зерен представляют собой сечения зерен поверхностью шлифа. Так как это сечение является случайным и может проходить на разных расстояниях от центра каждого отдельного зерна, то различие в размерах полиэдров не соответствует действительным различиям в размерах зерен. Наиболее близкой величиной к действительному размеру зерна являются наиболее крупные зерна.

а б Рисунок 1.1. Микроструктура однофазного сплава – твердого раствора в отожженном состоянии (а, б). Зерна могут иметь неодинаковые оттенки (б), т.к. в сечение шлифа попадают различные кристаллографические плоскости

 

При травлении образца, состоящего из однородных кристаллических зерен, например чистого металла, однородного твердого раствора и др. наблюдается часто различно протравленные поверхности разных зерен (рисунок 1.1).

Это явление объясняется тем, что на поверхности шлифа выходят зерна, имеющие различные кристаллографическую ориентировку, вследствие чего степень воздействия кислоты на эти зерна оказываются разной. Одни зерна выглядят блестящими, другие сильно протравливаются, темнеют. Это потемнение связано с образованием различных фигур травления, по-разному отражающих световые лучи. В случае сплавов, отдельные структурные составляющие образуют микрорельеф на поверхности шлифа, имеющий участки с различным наклоном отдельных поверхностей (рисунок 1.2, а).

Нормально расположенные участки отражают наибольшее количество света и оказываются наиболее светлыми. Другие участки - более темные. Часто контраст в изображении зернистой структуры связан не со структурой поверхности зерен, а с рельефом у границ зерен. Существует 3 разновидности границ зерен (рисунок 1.2, б,в,г). Кроме того, различные оттенки структурных составляющих могут являться результатом образования пленок, образованных при взаимодействии травителя со структурными составляющими.

  Рисунок 1. 2. Схема образования контраста в изображении рельефных структур: а - формирование контраста; б - граница зерен; в - избирательное растравливание одной из фаз; г - граница с примесями

 

С помощью металлографического исследования можно осуществлять качественное выявление структурных составляющих сплавов и количественное изучение микроструктур металлов и сплавов, во-первых, путем сравнения с известными изученными микросоставляющими структур и, во-вторых, специальными методами количественной металлографии.

 

1. Величина зерна определяется:

a) Методом визуальной оценки, состоящей в том, что рассматриваемая микроструктура, приближенно оценивается баллами стандартных шкал по ГОСТ 5639-68, ГОСТ 5640-68. По соответствующим таблицам, для каждого балла определяется площадь одного зерна и количество зерен на 1 мм2 и в 1 мм3.

b) Методом подсчета количества зерен на единице поверхности шлифа по соответствующим формулам. Если S - площадь, на которой подсчитывается количество зерен n, а М - увеличение микроскопа, то средняя величина зерна в сечении поверхности шлифа

,

фактическое сечение действительного зерна определяется соотношением

F = 0,66 Fg.

 

2. Определение протяженности границ зерен.

a) Метод, основанный на измерении количества зерен: (Липилин)

,

где n - количество зерен на данной площади, К - коэффициент, зависящий от формы зерен.

 

b) Метод секущих. (Салтыков)

,

 

где m - количество пересечений случайных секущих с линиями границ на единице длины. В качестве секущих могут быть применены как отрезки прямых, так и окружность.

 

3. Определение фазового состава.

Фазовый состав сплава чаще оценивают на глаз или путем сравнения структуры со стандартными шкалами.

a) Приближенный метод количественного определения фазового состава может быть проведен методом секущей с подсчетом протяженности отрезков, занятых разными структурными составляющими. Соотношение этих отрезков соответствует объемному содержанию отдельных составляющих.

b) Точечный метод А.А. Глаголева. Этот метод осуществляется путем оценки количества точек (точек пересечения окулярной сетки микроскопа), попадающих на поверхности каждой структурной составляющей. Кроме того, методом количественной металлографии производят:

определение величины поверхности раздела фаз и зерен;

определение числа частиц в объеме;

определение ориентации зерен в поликристаллических образцах.

На основании изучения изменения микроструктуры сплавов под действием различных технологических параметров обработки исследуется механизм протекающих превращений в структуре сплавов.

 

4. Электронная микроскопия. Большое значение в металлографических исследованиях находит в последнее время электронный микроскоп. Несомненно, ему принадлежит большое будущее. Если разрешающая способность оптического микроскопа достигает значений 0,00015 мм = 1500 А, то разрешающая способность электронных микроскопов достигает 5-10 А, т.е. в несколько сот раз больше, чем у оптического.

На электронном микроскопе осуществляют исследование тонких пленок (реплик), снятых с поверхности шлифа или непосредственное изучение тонких металлических пленок, полученных утонением массивного образца.

В наибольшей степени нуждаются в применении электронной микроскопии исследования процессов, связанные с выделением избыточных фаз, например, распад пересыщенных твердых растворов при термическом или деформационном старении.

5. Рентгеновские методы исследования. Одним из наиболее важных методов в установлении кристаллографического строения различных металлов и сплавов является рентгеноструктурный анализ. Этот метод исследования дает возможность определения характера взаимного расположения атомов в кристаллических телах, т.е. решить задачу, не доступную ни обычному, ни электронному микроскопу.

В основе рентгеноструктурного анализа лежит взаимодействие между рентгеновскими лучами и лежащими на их пути атомами исследуемого тела, благодаря которому последние становятся как бы новыми источниками рентгеновских лучей, являясь центрами их рассеяния.

Рассеяние лучей атомами можно уподобить отражению этих лучей от атомных плоскостей кристалла по законам геометрической оптики. Рентгеновские лучи отражаются не только от плоскостей, лежащих на поверхности, но и от глубинных. Отражаясь от нескольких одинаково ориентированных плоскостей, отраженный луч усиливается. Каждая плоскость кристаллической решетки дает свой пучок отраженных волн. Получив определенное чередование отраженных пучков рентгеновских лучей под определенными углами, рассчитывают межплоскостное расстояние, кристаллографические индексы отражающих плоскостей, в конечном счете, форму и размеры кристаллической решетки.

Кроме того, с помощью рентгеноструктурного анализа решается целый ряд металловедческих задач.

В материаловедении, кроме указанных методов применяются:

дилатометрический метод исследования внутренних превращений в металлах, основанный на измерении изменений индивидуальных объемов фаз в процессе фазовых превращений,

метод термического анализа, основанный на принципе учета и измерения скрытого тепла превращения, происходящего в металле при тех или иных превращениях,

магнитный анализ, основанный на свойствах ферромагнитных материалов изменять магнитные свойства с изменением температуры и протеканием фазовых превращений.

Кроме того, в материаловедении для характеристики превращений, происходящих в металлах и сплавах, используются все доступные измерению химические, физические и механические свойства, изменяющиеся при протекании исследуемых превращений. Очень важными свойствами, определяющими кинетику многих превращений, является электропроводность, растворимость в кислотах, плотность, твердость и др.

Практически все методы исследования, включая чисто металловедческие и изменения физико-механических свойств должны применяться в комплексе, дополняя друг друга.

Date: 2015-07-11; view: 581; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию