Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Классификаия галактикСтр 1 из 6Следующая ⇒
Галактики
Классификаия галактик Многообразны формы галактик. Типология форм галактик разработана Э. Хабблом: Большинство галактик относят к нескольким основным типам (по характерным внешним признакам, а мелкие различия галактик помогают подразделить эти типы на отдельные подтипы).3 а) обычные спиральные галактики (S) – ветви выходят из ядра; б) пересечённые (SB) – ядро пересечено широкой, яркой полосой (перемычка, бар), от концов бара закручиваются спиральные рукава. Спиральные галактики подразделяются на подтипы Sa, Sab, Sb, Sc, SBa и т.д. по относительным размерам ядра и диска (размеры ядра убывают от Sa к Sc). Некоторые спиральные системы видны в профиль как толстое или тонкое веретено, пересечённое полосой тёмного вещества, поглощающего свет. Наша галактика также является спиральной (Sb). Спиральные галактики окружены сфероидальной звёздной короной, в которой содержится значительная часть массы галактик. 3. Линзообразные, промежуточные галактики (S0, 20%,предсказаны, а потом найдены). Яркость от центра к краю падает ступеньками. Различают ядро, «линзу» и слабый «ореол». Иногда в наружных частях линзы видны зачатки спиральных рукавов, перемычки и наружное светлое кольцо. 4. Неправильные (Ir, 5%). Имеют неправильную форму и клочковатое строение; яркость и светимость невелики; изобилуют горячими сверхгигантами, газовыми туманностями (Магеллановы Облака), пылью, взаимодействующими галактиками; большинство из них – карлики. Делятся на подтипы: а) Эти звёздные системы (Магеллановы Облака) – предельный случай спиральных галактик, чрезвычайно плоски, отсутствует ядро, осевое вращение; б) По цвету и плавному изменению яркости к краям сходны с эллиптическими, а по спектру – со спиральными системами (М 82). Но нет типичных звёзд-сверхгигантов и ярких газовых туманностей. Облака газа движутся со скоростями более тысячи км/с во все стороны; в) Пекулярные. Каждая из галактик имеет свою уникальную форму. Обычно двойные галактики, между которыми наблюдаются перемычки, хвосты, мостики светлой и тёмной материи и т. д. – признаки взаимного влияния близко расположенных галактик. Среди них в специальный класс выделены взаимодействующие галактики.1 По морфологическим свойствам галактики с нестационарными ядрами отличаются от нормальных галактик генерацией мощного рентгеновского, УФ-, ИК- и радиоизлучения, выбросами радиоизлучающей плазмы, ускорением газовых облаков и т. д. Принято подразделять на четыре основных типа: 1. Сейфертовские галактики (К. Сейферт, 1943 г., США). В большинстве своём – спиральные галактики с яркими ядрами. Они образуют наиболее многочисленный класс нестационарных галактик. Характерным свойством является присутствие в их оптических спектрах широких эмиссионных линий (газ движется с большими скоростями). К 1983 г. обнаружено около 200 таких галактик (»1%.). Это, как правило, спиральные галактики типов Sa и Sb (»70%) Они часто входят в состав шар и групп галактик, но избегают областей, занятых богатыми скоплениями. (Эти особенности присущи всем галактикам с УФ-избытком). Большинство из них развёрнуты к нам плашмя, есть несколько случаев ярких сейфертовских галактик, развернутых к нам ребром (по-видимому, ядра обладают анизотропией излучения). Ядра сейфертовских галактик – одни из самых мощных источников нетеплового излучения. Их радиоизлучение в тысячи раз слабее, чем излучение радиогалактик. Ядро Нашей Галактики проявляет признаки активности и не исключено, что его по основным параметрам можно отнести к ядрам слабых сейфертовских галактик.2 2. Радиогалактики обладают мощным электромагнитным излучением в радиодиапазоне, большинство из них – эллиптические галактики. К ним можно отнести радиоисточники с мощностью радиоизлучения, характерного для массивных эллиптических галактик. Радиогалактики делят дополнительно на несколько типов (D-галактики, Е-галактики, N-галактики и другие). Эллиптические Е-галактики бедны межзвёздным газом. В радиогалактиках имеется два излучающих облака (компонента), располагающихся более или менее симметрично относительно галактики, видимой в оптических лучах. Радиоисточники образуются в результате выделения энергии в ядре галактики. Важную роль играет биполярный характер магнитного поля ядра галактики, из магнитных полюсов которого вдоль силовых линий поля вытекают струи релятивистской плазмы, расширяющиеся со временем, расстояние между ними увеличивается. У некоторых радиогалактик обнаружены крупномасштабные остронаправленные струи выброшенного из ядер вещества. Ближайшие радиогалактики (Кентавр А, Дева А, Персей А и др.) являются ярчайшими членами скоплений галактик. Наиболее полно изучены радиогалактики: * Лебедь А (Е-галактика, DB-радиогалактика, по красному смещению расстояние около 200 Мпк, 16-я звёздная величина, в центре – газово-пылевой слой); * Кентавр А (ближайшая радиогалактика, содержит протяжённый радиоисточник, старую, сильно расширившуюся двойную структуру, в центре - компактная двойная радиоструктура, в ядре – компактный радиоисточник); * Дева А (Е-галактика, тип сD, с одной стороны от ядра выброс вещества, с другой - расположен второй компонент радиоизлучения, имеет протяжённый радиоисточник относительно низкой поверхностной яркости, вероятно галактика движется через плотную межгалактическую среду скопления галактик в Деве). 3 . Лацертиды – немногочисленная группа галактик с активными ядрами, их основной признак – переменность блеска, относятся к внегалактическим объектам. Характеризуются оптической переменностью с большой амплитудой, переменным радиоизлучением и заметной поляризацией излучения. Она имеет вид звёздоподобных объектов, окружённых туманными оболочками, похожими на квазары. В их оптических спектрах нет эмиссионных линий, по которым можно было бы измерить красное смещение и тем самым расстояние до объекта. Спектр слабой туманной оболочки вокруг яркого ядра содержит линии поглощения (они типичны для звёздного компонента удалённой галактики), и тем самым соответствует спектрам обычных эллиптических галактик. В ядрах лацертидов отсутствует газовая оболочка. Излучение лацертидов – это излучение, идущее из самых внутренних частей центрального источника. Характерные временами переменные излучения позволяют оценить размер радиоизлучающей области лацертидов. Возможно, лацертиды – далеко проэволюционировавшие массивные ядра гигантских массивных эллиптических галактик. 4. Квазары – точечные источники излучения, как и лацертиды. У близких квазаров обнаружены слабые туманные оболочки, спектры которых позволяют считать квазары ядрами далёких галактик.1 (Далее см.: Глава 2.) В центрах галактик обычно сосредоточено огромное количество вещества (до 10% всей массы). Здесь происходят выбросы большинства количества вещества, что приводит к интенсивному движению от центра туч водорода. В отдельных галактиках ядро может представлять собой чёрную дыру.2 Современная астрофизика рассматривает чёрные дыры как реальные космические объекты, возникающие в результате гравитационного коллапса тяжёлых звёзд и часто присутствующие в центрах галактик. 1 Наиболее чётко они выделяются в спиральных галактиках. Ядро нашей Галактики имеет массу порядка несколько миллионов массы Солнца, оно окружено газовыми облаками, распространяющимися на расстояние до 150 пк от центра. Размер самого ядра меньше 10 пк, а его центральной части ~ 10-4пк. Некоторые галактики (Магеллановы Облака) вообще не имеют ядро. У некоторых галактик в ядрах обнаружены мощные области ионизированного газа и горячие звёзды («пекулярные ядра»). Для таких галактик характерны яркие эмиссионные линии в спектрах и мощное непрерывное УФ-излучение («галактики Маркаряна»). В отдельных случаях процессы, протекающие в ядрах, не могут быть объяснены свойствами только сконцентрированных в них звёзд и газа. Таковы галактики с активными (нестационарными) ядрами, составляющими по численности около 1% нормальных галактик (с неактивными ядрами). По морфологическим свойствам галактики с нестационарными ядрами существенно отличаются от нормальных галактик.2 Из ядер галактик происходит непрерывное истечение водорода. Водород является самым простым «кирпичиком», из которого в недрах звёзд образуются в процессе атомных реакций более сложные атомы. Наше Солнце, как обычная звезда, производит только гелий из водорода (который дают ядра галактик), очень массивные звёзды производят углерод – главный «кирпичик» живого вещества.3 Для близких в нам систем иногда удаётся подсчитать яркие звёзды и по ним оценить массу всей системы. Зависимость функции светимости звёзд позволяет определить массы звёздных систем, имеющих сходные формы и звёздный состав. Оценки масс галактик по последнему методу получаются меньшими, чем по вращению галактик («парадокс скрытой массы»). Определение звёздной массы. 1. Наблюдение скоростей вращения периферийных, промежуточных и центральных частей спиральных галактик (спиральные галактики вращаются вокруг своей оси не как твёрдый однородный по массе диск, а дифференциально – по закону, который зависит от распределения массы). 2. У эллиптических галактик массу оценивают по расширению линий в их спектрах, которое вызывается движением звёзд: чем больше скорости звёзд, тем больше масса галактик и шире линии в её спектре. По мощности излучения галактики можно подразделить на несколько классов светимости.1 Вопрос об образовании и строении галактик изучает не только космология, но и космогония (различают планетную, звёздную, галактическую космогонию).2 На ранней стадии развития Вселенная была заполнена разреженным газом, который распался потом на сгущения, а сгущения в последующем – на отдельные облака. Одни из облаков имели вращательный момент и центральное сгущение, из них впоследствии образовались спиральные галактики, а другие практически не вращались, они положили начало эллиптическим галактикам, облака же без значительного центрального сгущения, но всё же обладавшие вращательным моментом, дали начало неправильным галактикам. В массивных галактиках эволюция идёт быстрее. Галактики с большим вращательным моментом развились в тип Sc, со средним – в тип Sb, а с небольшим - в Sa. Чем массивнее спиральная галактика, тем сильнее тяготение сжимает спиральные рукава, поэтому у массивных галактик рукава тонкие, в них больше звёзд и меньше газа. Весь газ в эллиптических системах с самого начала превратился в звёзды сферической подсистемы. Сравнивая количество звёзд разных поколений у большинства однотипных галактик можно установить возможные пути их эволюции. У более старых галактик наблюдается истощение запасов межзвёздного газа и снижение в связи с этим темпов образования звёзд новых поколений. Зато в них много белых карликов, представляющих собой одну из последних стадий эволюции звёзд. В этом и заключается старение галактик. Следует отметить, что в начале эволюции галактики имели более высокую светимость, так как в них было больше массивных молодых звёзд. Date: 2015-07-10; view: 975; Нарушение авторских прав |