Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Наука в собственном смысле: Классическое естествознание и его методология
Выбор естествознания (и прежде всего физики) для анализа основных этапов становления науки в собственном смысле обусловлен следующим обстоятельством. История и современное состояние науки показали, что именно в естествознании общие контуры науки как таковой, ее структура, динамика и т. п. просматриваются наиболее четко, зримо и выпукло. Хронологически период, становления естествознания как определенной системы знания, начинается примерно в XVI—XVII вв. и завершается на рубеже XIX—XX вв. В свою очередь данный период можно разделить на два этапа: этап механистического естествознания (до 30-х гг. XDC в.) и этап зарождения и формирования эволюционных идей (до конца XIX — начала XX в.). I. Этап механистического естествознания. Начало этого этапа совпадает со временем перехода от феодализма к капитализму в Западной Европе. Начавшееся бурное развитие производительных сил (промышленности, горного и военного дела, транспорта и т. п.) потребовало решения целого ряда технических задач. А это в свою очередь вызвало интенсивное формирование и развитие частных наук, среди которых особую значимость приобрела механика — в силу необходимости решения названных задач. В свою очередь этап механистического естествознания можно условно подразделить на две ступени — доныотоновскую и ньютоновскую, — связанные соответственно с двумя глобальными научными революциями, происходившими в XVI—XVII вв. и создавшими принципиально новое (по сравнению с античностью и средневековьем) понимание мира. Доныотоновская ступень — и соответственно первая научная революция происходила в период Возрождения, и ее содержание определило гелиоцентрическое учение Я. Коперника (1473—1543). Это был конец геоцентрической системы, которую Коперник отверг на основе большого числа астрономических наблюдений и расчетов, — это и было первой научной революцией, подрывавшей также и религиозную картину мира. Вторую глобальную научную революцию XVII в. чаше всего связывают с именами Галилея, Кеплера и Ньютона, который ее и завершил, открыв тем самым новую — посленьютоновскую ступень развития механистического естествознания. В учении Г. Галилея (1564—1642) уже были заложены достаточно прочные основного механистического естествознания. В центре его наручных интересов стояла проблема движения. Открытие принципа инерции, исследование им свободного падения тел имели большое значение для становления механики как науки. Исходным пунктом познания, по Галилею, является чувственный опыт, который, однако, сам по себе не дает достоверного знания. Оно достигается планомерным и реальным или мысленным экспериментированием, опирающимся на строгое количественно-математическое описание. Галилей выделял два основных метода экспериментального: исследования природы: 1 аналитический («метод резолюций») — прогнозирование чувственного опыта с использованием средств математики; абстракций и идеализации и 2 Синтетически-дедуктивный («метод композиций») — на базе количественных соотношений вырабатываются некоторые теоретические схемы, которые применяются при интерпретации явлений, их объяснении. Достоверное знание в итоге реализуется в объясняющей теоретической схеме как единство синтетического и аналитического, чувственного и рационального. Следовательно, отличительное свойство метода Галилея — построение научной эмпирии, которая резко отлична от обыденного опыта. Способ мышления Галилея исходил из того, что одни чувства без помощи разума не способны дать нам истинного понимания природы, для достижения которого нужно чувство, сопровождаемое рассуждением. Иоган Кеплер (1571—1630) установил три закона движения планет относительно Солнца. Кроме того, он предложил теорию солнечных и лунных затмений и способы их предсказания, уточнил расстояние между Землей и Солнцем и др. Но Кеплер не объяснил причины движения планет, ибо динамика— учение о силах и их взаимодействии — была создана позже Ньютоном. Вторая научная революция завершилась творчеством Ньютона (1643—1727), научное наследие которого чрезвычайно глубоко и разнообразно, уже хотя бы потому, что, как сказал он сам, «я стоял на плечах гигантов». Ньютон сформулировал понятия и законы классической механики, дал математическую формулировку закона всемирного тяготения, теоретически обосновал законы Кеплера (создав тем самым небесную механику), и с единой точки зрения объяснил большой объем опытных данных (неравенства движения Земли, Луны и планет, морские приливы и др.). Кроме того, Ньютон был автором многих новых физических представлений — о сочетании корпускулярных и волновых представлений о природе света. Построенный Ньютоном фундамент, по свидетельству Эйнштейна, оказался исключительно плодотворным и до конца ХГХ в. считался незыблемым. Научный метод Ньютона имел целью четкое противопоставление достоверного естественнонаучного знания вымыслам и умозрительным схемам натурфилософии. Знаменитое его высказывание «гипотез не измышляю» было лозунгом этого противопоставления. Содержание научного метода Ньютона (метода принципов) сводится к следующим основным «ходам мыслей»: 1) провести опыты, наблюдения, эксперименты; 2) посредством индукции вычленить в чистом виде отдельные стороны естественного процесса и сделать их объективно наблюдаемыми; 3) понять управляющие этими процессами фундаментальные закономерности; 4) осуществить математическое выражение этих принципов, т. е математически сформулировать взаимосвязи естественных процессов; 5) построить целостную теоретическую систему путем дедуктивного развертывания фундаментальных принципов. Сам Ньютон с помощью своего метода решил три кардинальные задачи. Во-первых, четко отделил науку от умозрительной натурфилософии и дал критику последней. («Физика, берегись метафизики!») Под натурфилософией Ньютон понимал «точную науку о природе», теоретико-математическое учение о ней. Во-вторых, разработал классическую механику как целостную систему знаний о механическом движении тел. Его механика стала классическим образцом научной теории дедуктивного типа и эталоном научной теории вообще, сохранив свое значение до настоящего времени. В-третьих, Ньютон завершил построение новой революционной для того времени картины природы, сформулировав основные идеи, понятия, принципы, составившие механическую картину мира. При этом отсчитал, что «было бы желательно вывести из начал механики и остальные явления природы». Несмотря на ограниченность уровнем естествознания ХVII в., механическая картина мира сыграла в целом положительную роль в развитии науки и философии. Она давала естественнонаучное понимание многих явлений природы, освободив их от мифологических и религиозных схоластических толкований. Она ориентировала на понимание природы из нее самой, на познание естественных причин и законов природных явлений. Однако накапливались факты, которые все труднее было согласовывать с принципами механической картины мира. Она теряла свой универсальный характер, расщепляясь на ряд частно научных картин, начался процесс расшатывания механической картины мира. В середине XIX в. она окончательно утратила статус общенаучной. Первую брешь в мире подобных представлений пробила максвелловская теория электромагнитных явлений, дававшая математическое описание процессов, не сводя их к механике» II. Этап зарождения и формирования эволюционных идей — с начала ЗО-х гг. ХIХ в. до конца XIX— начала XX в. Уже с конца ХУШ в. в естественных науках (в том числе и в физике, которая выдвинулась на первый план) накапливались факты, эмпирический материал, которые не «вмещались» в механическую картину мира и не объяснялись ею. «Подрыв» этой картины мира шел главным образом с двух сторон: во-первых, со стороны самой физики и, во-вторых, со стороны геологии и биологии. Первая линия «подрыва> была связана с активизацией исследований в области электрического и магнитного полей. Особенно большой вклад в эти исследования внесли английские ученые М. Фарадей (1791—1867) и Д. Максвелл (1831—1879), Благодаря их усилиям стали формироваться не только корпускулярные, но и континуальные («сплошная среда») представления. Фарадей обнаружил взаимосвязь между электричеством и магнетизмом, ввел понятия электрического и магнитного полей, выдвинул идею о существовании электромагнитного поля. Максвелл создал электродинамику и статистическую физику, построил теорию электромагнитного поля, предсказал существование электромагнитных волн, выдвинул идею об электромагнитной природе света. Тем самым материя предстала не только как вещество (как в механической картине мира), но и как электромагнитное поле. Успехи электродинамики привели к созданию электромагнитной картины мира, которая объясняла более широкий круг явлений и более глубоко выражала единство мира. Таким образом, работы в области электромагнетизма сильно подорвали механическую картину мира и по существу положили начало ее крушению. Что касается второго направления «подрыва» механической картины мира, то его начало связано с именами английского геолога Ч. Лайеля (1797—1875) и французскими биологами Ж Б. Ламарком (1744-1829) и Ж Кювье (1769-1832). Ч. Лайель в своем главном труде «Основы геологии» в трех томах (1830—1833) разработал учение о медленном и непрерывном изменении земной поверхности под влиянием постоянных геологических факторов. Однако Земля для Лайеля не развивается в определенном направлении, она просто изменяется случайным, бессвязным образом. Причем изменение — это у него лишь постепенные количественные изменения, без скачка, без перерывов постепенности, без качественных изменений. А это метафизический, «плоскоэволюционный» подход. Ж. Б. Ламарк создал первую целостную концепцию эволюции живой природы. По его мнению, виды животных и растений постоянно изменяются, усложняясь в своей организации в результате влияния внешней среды и некоего внутреннего стремления всех организмов к усовершенствованию. В отличие от Ламарка Ж. Кювье не признавал изменяемости видов, объясняя смену ископаемых фаун так называемой «теорией катастроф», которая исключала идею эволюции органического мира. Кювье утверждал, что каждый период в историк Земли завершается мировой катастрофой— поднятием и опусканием материков, наводнениями, разрывами слоев и др. В результате этих катастроф гибли животные и растения, и в новых условиях появились новые их виды, не похожие на предыдущие. Причину катастроф он не указывал, не объяснял. Итак, уже в первые десятилетия ХIХ в. было фактически подготовлено «свержение» метафизического в целом способа мышления, господствовавшего в естествознании. Особенно этому способствовали три великих открытия: создание клеточной теории, открытие закона сохранения и превращения энергии и разработка Дарвином эволюционной теории. Теория клетки была создана немецкими учеными М. Шлейденом и Т. Шванном в 1838—1839 гг. Клеточная теория доказала внутреннее единство всего живого и указала на единство происхождения и развития всех живых существ. Она утвердила общность происхождения, а также единство строения и развития растений и животных. Открытие в 40-х гг. XIX в. закона сохранения и превращения энергии (Ю. Майер, Д. Джоуль, Э. Ленц) показало, что признававшиеся ранее изолированными так называемые «силы» — теплота, свет, электричество, магнетизм и т. п. — взаимосвязаны, переходят при определенных условиях одна в другую и представляют собой лишь различные формы одного и того же движения в природе. Энергия как общая количественная мера различных форм движения материи не возникает из ничего и не исчезнет, а может только переходить из одной формы в другую. Теория Ч. Дарвина окончательно была оформлена в его главном труде «Происхождение видов путем естественного отбора» (1859). Эта теория показала, что растительные и животные организмы (включая человека) — не богом созданы, а являются результатом длительного естественного развития (эволюции) органического мира, ведут свое начало от немногих простейших существ, которые в свою очередь произошли от неживой природы. Тем самым были найдены материальные факторы и причины эволюции — наследственность и изменчивость — и движущие факторы эволюции — естественный отбор для организмов, живущих в «дикой» природе, и искусственный отбор для разводимых человеком домашних животных и культурных растений. Date: 2015-07-10; view: 958; Нарушение авторских прав |