Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Микроэлементы





Микроэлементы – это те минералы, оцениваемая диетическая потребность которых обычно менее чем 1 мкг/г и часто менее чем 50 нг/г рациона для лабораторных животных.

Отметим, что обычно лишь предполагается, что они являются незаменимыми для людей, но нутриционная их важность точно не установлена. Причиной этого является то, что они требуются в небольших количествах, то есть менее 1 мг/сут.

К микроэлементам относятся: мышьяк, бор, бром, кадмий, фтор, свинец, литий, марганец, молибден, никель, кремний, олово и ванадий.

Начиная с 1970-х годов было много спекулятивных заявлений относительно того, что недостаток одного или большего количества микроэлементов вносит значительный вклад в возникновение ряда заболеваний. Однако большинство исследователей считают, что недостаточное потребление определенного микроэлемента является значимым только тогда, когда организм подвергается стрессу, который увеличивает потребность в микроэлементе.

Мышьяк

Метаболическая функция достаточно ясно не определена. Предполагают, что мышьяк выполняет биохимическую роль или роли, которые затрагивают формирование различных метаболитов из метионина (например, цистеина и таурина) и аргинина (например, путресцина).

Возможно, мышьяк играет роль в некоторых ферментативных реакциях. Как активатор фермента мышьяк, вероятно, действует как заместитель фосфата. Как ингибитор, мышьяк очевидно реагирует с сульфгидрильными группами ферментов.

Метаболизм. Более 90% неорганических соединений мышьяка растворимы и хорошо абсорбируются. Далее неорганический мышьяк перемещается в печень, где он метилируется. Никакая ткань не имеет существенного накопления мышьяка. Самые высокие концентрации мышьяка находят в коже, выпавших волосах и ногтях, вероятно в результате связи арсенита с SH-группами белков, которых относительно больше в этих тканях.

Экскреция мышьяка происходит быстро, преимущественно с мочой. Незначительные количества удаляются с потом, с выпавшими волосами, отшелушивающейся кожей и желчью.

Признаки дефицита мышьяка – сниженный рост и ненормальное воспроизводство, характеризующееся повышением фертильности и перинатальной смертности. Другие известные симптомы: сниженная концентрация триглицеридов сыворотки и смерть в процессе кормления грудью.

Хотя известны биохимические и физиологические функции мышьяка, в настоящее время не удается связать расстройства этих функций с нутритивным дефицитом мышьяка.

Токсичность мышьяка – при пероральном потреблении относительно низка; он фактически менее ядовит, чем селен. Ядовитые количества неорганического мышьяка вообще составляют миллиграммы. Отношение яда к нутриционной дозе для крыс – около 1250. Некоторые формы органического мышьяка фактически неядовиты.

Симптомы подострого и хронического отравления мышьяком у людей включают: развитие различных типов дерматита; депрессию гемопоэза; повреждение печени, характеризующееся желтухой, портальным циррозом печени и асцитом; сенсорные нарушения; периферический неврит; анорексию и потерю массы тела.

Суточная потребность. Основанная на вычислениях, возможная потребность мышьяка для людей с рационом 2000 ккал составила бы приблизительно 12–15 мкг ежедневно.

Пищевые источники. Рыба, зерно и продукты хлебных злаков обеспечивают достаточное содержание мышьяка в рационе.

Бор

Биологический интерес представляют комплексы бора со многими веществами, включая сахар и полисахариды, аденозин-5-фосфат, пиридоксин, рибофлавин, дегидроаскорбиновая кислота и пиридин нуклеотиды. Бор влияет на макроминеральный метаболизм, влияет на метаболизм стероидных гормонов и у людей и у животных. Отсутствие бора вызывает увеличение появления стрессовых нутриционных факторов, которые влияют на функцию мембраны клетки (то есть, кальция, холекальцифрола, магния или снижение калия). Таким образом, бор может выполнять функцию на уровне мембраны клетки.

Метаболизм. Бор пищи в виде декагидрата тетрабората натрия и борной кислоты – быстро абсорбируются и выделяются в значительной степени с мочой. Более чем 90% потребляемого бора обычно абсорбируются. Бор распределен во всех тканях. Самая высокая концентрация бора в кости, селезенке и щитовидная железа.

Признаки дефицита. Очевидно, что бор биологически динамичный микроэлемент, который затрагивает макроминеральный метаболизм. Исключение из рациона бора может играть роль при некоторых расстройствах неизвестной причины, которые проявляются нарушенным макроминеральным метаболизмом (например, остеопорозом, уролитиазом и неправильным формированием кости, связанных с длительным ПП).


Точно верифицировать симптомы дефицита бора сложно, так как отсутствие бора затрагивает макроминеральный метаболизм. Известно, что бор воздействует на обмен кальция и меди. Его дефицит может приводить к гиперхромной анемии и тромбоцитопении. Бор может потенцировать эффекты принимаемых эстрогенов у постклимактерических женщин. Диетический бор не затрагивает эти переменные у мужчин и женщин, не получающих эстрогены. Показано, что низкие диетические концентрации бора приводят к снижению умственной способности.

Токсичность. Бор имеет низкую токсичность.

Перенасыщение бором приводит к выпадению волос, полиморфной сухой эритеме и анемии, которые проходят при нормализации уровня бора в диете. Признаки острой интоксикации включают: тошноту, рвоту, диарею, дерматит и летаргию. Кроме того, высокий прием бора с пищей стимулирует рибофлавинурию.

Суточная потребность составляет более 0,3 мг, вероятно ближе к 1 мг.

Пищевые источники. Ежедневное потребление бора людьми может изменяться в широких пределах в зависимости от количества различных групп пищи в рационе. Пищевые продукты растительного происхождения, особенно фрукты нецитрусовых, покрытые листвой овощи, орехи и бобы богатые источники бора. Вино, сидр и пиво также имеют значительное содержание бора. Мясо, рыба и молочные продукты бедны бором.

Марганец

Известные биохимические функции марганца – это активация ферментов и некоторых металлоэнзимов.

Метаболизм. Абсорбция марганца из рациона предположительно равна 5%.Всасывание марганца происходит по всей тонкой кишке. При абсорбции марганец конкурирует с железом и кобальтом. Таким образом, один из металлов, если уровень его высок, может проявлять ингибирующий эффект на всасывание других. В клетках марганец преимущественно находится в митохондриях, в таких органах как печень, почки и поджелудочная железа. Марганец почти полностью выделяется с калом.

Признаки дефицита у лабораторных животных включают: замедление роста, нарушения скелета, угнетение репродуктивной функции, атаксию у новорожденных и дефекты метаболизма углеводов и липидов.

Описан пока единственный достоверный случай дефицита марганца человека, который после употребления молочной смеси в течение длительного периода соблюдал диету. У него отмечались: потеря массы тела, замедление роста волос и ногтей, дерматит и гипохолестеринемия. Кроме того, его черные волосы приобрели красноватый оттенок и нарушился коагуляционный ответ белка на витамин К.

У пациентов с определенными типами эпилепсии отмечается снижение концентрации марганца в цельной крови. Наконец, низкие концентрации марганца сыворотки, обычно в сочетании с низкими концентрациями меди и цинка, были найдены у пациентов при нарушенном метаболизме кости, что исправлялось введением в рацион марганца, меди и цинка.

Возможно люди, подверженные стрессорному воздействию, имеют повышенную потребность в одном из марганцевых ферментов, что может привести к большей восприимчивости к дефициту марганца. Риск появления дефицита марганца увеличивается у людей, злоупотребляющих алкоголем.

Токсичность. При пероральном поступлении марганец относится к наименее ядовитым микроэлементам. Главные признаки интоксикации марганца у животных – угнетение роста, сниженный аппетит, нарушение метаболизма железа и изменение функции мозга. Сообщений о случаях интоксикации у людей, вызванной пероральным приемом пищи с высоким содержанием, нет. Интоксикация у людей наблюдается в результате хронической ингаляции больших количеств марганца на производстве. Возникают тяжелые нарушения психики, включая гиперраздражительность, гипермоторику и галлюцинации – "марганцевое безумие". При прогрессировании интоксикации развиваются изменения в экстрапирамидной системе, подобные болезни Паркинсона.


Суточная потребность в марганце для взрослых 2–5 мг.

Пищевые источники. Неочищенные хлебные злаки, орехи, покрытые листвой овощи и чай богаты марганцем, тогда как очищенное зерно, мясо и ежедневно потребляемые продукты содержат лишь небольшие его количества. Таким образом, рационы богатые пищевыми продуктами растительного происхождения поставляют ежедневно в среднем 8,3 мг марганца, при том, что рационы в больницах поставляют менее 0,36–1,78 мг марганца в день.

Молибден

Молибденоэнзимы катализируют гидроксилирование различных субстратов. Альдегидоксидаза окисляет и нейтрализует различные пиримидины, пурины, птеридины. Ксантиноксидаза катализирует преобразование гипоксантинов в ксантины, а ксантины – в мочевую кислоту. Сульфитоксидаза катализирует преобразование сульфита в сульфат.

Метаболизм. Молибден из пищевых продуктов и в форме растворимых комплексов легко абсорбируется. У людей всасывается 25–80% поступающего с пищей молибдена. Абсорбция происходит в желудке и по всей тонкой кишке, в большей степени в ее проксимальном отделе, чем в дистальном. На всасывание молибдена значительно влияют взаимодействия между молибденом и различными диетическими формами серы. Органы, которые содержат самые высокие количества молибдена – это печень и почки.

Большая часть молибдена быстро поступает в почки и экскретируется ими. Экскреция является главным механизмом его гомеостатического регулирования. Существенные количества этого элемента экскретируются с желчью.

Признаки дефицита. Дефицит молибдена возможен у людей, которые получают полное парентеральное питание (ПП) или подвержены стрессу (увеличена потребность в сульфитоксидазе).

Признание роли молибдена как компонента сульфитоксидазы и данные о том, что дефицит сульфитоксидазы нарушает метаболизм цистеина, были подтверждены случаем нарушения, вызванного недостатком функционирующего молибдена у человека. Существует врожденный дефект в метаболизме цистеина (дефицит сульфитоксидазы), приводящий к коме и летальному исходу. Аномалия характеризуется серьезным повреждением мозга, умственной отсталостью, вывихом хрусталика, увеличенной мочевой экскрецией сульфита, уменьшенной мочевой экскрецией сульфата.


У пациентов, получающих длительно полное ПП, описан синдром "приобретенного дефицита молибдена": гиперметионинемия, гипоурикемия, гипероксипуринемия, гипоурикозурия и гипосульфатурия, прогрессирующие умственные расстройства (до комы).

Токсичность. Молибден – относительно неядовитый элемент. Необходимы его большие пероральные дозы, чтобы преодолеть гомеостатический контроль. Большинство признаков интоксикации молибденом аналогичны или идентичны таковым при дефиците меди (то есть, замедление роста и анемия). Профессиональные интоксикации, выявленные эпидемиологическими методами, характеризовались повышением концентрации мочевой кислоты в крови и учащении случаев подагры.

Суточная потребность в молибдене у взрослых 75–250 мкг, у лиц старше 75 лет – 200 мкг.

Пищевые источники. Большинство обычных рационов поставляет приблизительно 50–100 мкг молибдена в день, то есть не обеспечивает минимальный уровень безопасного и адекватного его потребления. Самые богатые источники молибдена: молоко и молочные продукты, высушенные бобы, мясо внутренних органов (печень и почки), хлебные злаки и выпечка. Бедны молибденом овощи, фрукты, сахар, масла, жиры и рыба.

Никель

Поскольку никель эссенциален для некоторых животных, предполагается, что никель также необходим человеку. Связь дивалентного никеля с различными лигандами, включая аминокислоты и белки, вероятно, важна при внеклеточном транспорте, внутриклеточной связи и мочевой и желчной экскреции никеля. Предполагается, что никель участвует как структурный компонент в некоторых ферментах.

Метаболизм. Поступающий внутрь с водой никель абсорбируется на 20–25%. Определенные пищевые продукты снижать его абсорбцию: молоко, кофе, чай, апельсиновый сок и аскорбиновая кислота. Таким образом, никель плохо абсорбируются (менее чем 10%), если потребляется с типичными рационами. Всасывание никеля увеличивается при железодефиците, беременности и кормлении грудью. Никель транспортируется преимущественно с альбумином сыворотки. Никакая ткань или орган значимо не накапливают никель при поступлении его в физиологических дозах. Щитовидная железа и надпочечники имеют относительно высокие его концентрации. Выделяется преимущественно с калом, мочой, потом и желчью.

Признаки дефицита. До сих пор более известно о физиологической функции и потребности никеля, чем о специфических расстройствах, вызываемых им, исключая дерматит, который полностью или частично относится к дефициту никеля.

Токсичность. Угроза интоксикации никелем при пероральном его потреблении маловероятна. Из-за превосходного гомеостатического регулирования соли никеля проявляют свое ядовитое действие главным образом в виде раздражения желудочно-кишечного тракта.

Суточная потребность. Адекватное ежедневное потребление никеля должно составлять 100–300 мкг.

Пищевые источники: шоколад, орехи, высушенные бобы, горох и зерно. Обычные рационы обеспечивают менее 150 мкг ежедневно.

Кремний

Предполагается, что кремний функционирует как биологический структурообразующий фактор соединений, которые вносят вклад в архитектуру и упругость соединительной ткани. Соединительные компоненты ткани, в которых кремний вероятно играет фундаментальную роль -это коллаген, эластин и мукополисахариды.

Метаболизм кремния. Немного известно о метаболизме кремния. Увеличение потребления кремния повышает экскрецию у людей с мочой до довольно четких пределов.

Признаки дефицита. Большинство симптомов кремниевого дефицита у лабораторных животных указывает на ненормальный метаболизм соединительной ткани и кости. Признаки дефицита более выражены при низком диетическом потреблении кальция и высоком уровне пищевого алюминия. Кремниевые добавки предотвращают увеличение концентрации алюминия в мозге. Считается, что серьезный недостаток диетического кремния у человека может иметь вредные эффекты на мозг и функцию костей и суставов.

Токсичность кремния. Кремний – по существу не яд в случае перорального приема. Так, антацид магний трисиликат использовался в течение десятков лет без вредных эффектов.

Суточная потребность в кремнии находится в диапазоне от 5 до 20 мг.

Пищевые источники. Потребление кремния очень изменяется в зависимости от количества и доли в рационе продуктов животного (кремний-низких) и растительного (кремний-высоких) происхождения и от количества очищенных и обработанных пищевых продуктов в рационе. Самые богатые источники кремния – неочищенное зерно с высоким содержанием волокон, продукты из хлебных злаков и корнеплоды овощей. Обычная диета поставляет 21–46 мг кремния в день.

Ванадий

В биологических системах наиболее важными формами ванадия являются тетра- и пентавалентные состояния, которые легко образуют комплексы с другими веществами, такими как трансферрин или гемоглобин, таким образом стабилизируя их против окисления. Предполагают, что ванадий играет роль в ферментах фосфорилтрансферазе, аденилатциклазе и протеинкиназе; как кофактор фермента в форме ванадила – в гормонах, глюкозе, липидах, кости и метаболизме зуба. Наиболее изученная галопероксидаза – пероксидаза щитовидной железы.

Метаболизм. Абсорбируется менее чем 5% поступившего перорально ванадия (как ванадил или ванадат). Множество веществ может повышать степень токсичности ванадия, влияя на его абсорбцию, включая аскорбиновую кислоту, хром, белок, железистое железо, хлорид и гидроксид алюминия. При поступлении в кровь ванадий, очевидно, конвертируется в ванадил-трансферрин и ванадил-ферритиновые комплексы в жидкостях организма и плазме. Моча представляется главным средством экскреции для абсорбированного ванадия, а кость – главное место депо.

Признаки дефицита. Большинство сообщаемых признаков являются сомнительными. Рационы, используемые в исследованиях с отсутствием ванадия, имели изменяющееся содержание белка, аминокислот, аскорбиновой кислоты, железа, меди и возможно других нутриентов, которые могут воздействовать на ванадий. Дефицит ванадия у животных приводил к повышению частоты абортов и снижению количества молока, приблизительно 40% детенышей погибали, увеличивался вес щитовидной железы, уменьшался рост. Дефицит ванадия не идентифицирован у людей.

Клиническая важность ванадия сомнительна. Поскольку ванадий может затрагивать метаболизм йода и функцию щитовидной железы, предполагают, что он может обладать нутриционной значимостью при стрессе, который вызывает резкое снижение нормального статуса щитовидной железы.

Токсичность. Ванадий может быть ядовитым элементом. Изучения острой интоксикации указывают, что это нейротоксичный и геморрагически-эндотелиотоксичный яд, с нефро- и гепатотоксичным компонентами. Показано, что длительное ежедневное употребление более 10 мг ванадия может привести к токсикологическим последствиям.

Суточная потребность. Ежедневное диетическое потребление 10 мкг ванадия вероятно соответствует его потребности.

Пищевые источники. Рационы обычно поставляют 6–10 мкг ванадия в день. Пищевые продукты, богатые ванадием: моллюск, грибы, петрушка, семя укропа, черный перец. Напитки, жиры и масла, свежие фрукты и свежие овощи содержат наименьшее количество ванадия.

Другие микроэлементы

Результаты исследований позволяют предполагать, что бром, фтор, свинец и олово являются эссенциальными микроэлементами.

Бром. Сообщается, что рацион коз, содержащий менее 1 мг брома на 1 кг пищи, приводит к снижению роста, уровня гемоглобина и продолжительности жизни.

Фтор. Всеми признано, что фторид имеет некоторые полезные фармакологические свойства, которые помогают предотвращать зубной кариес и возможно защищает против переломов костей, связанных с остеопорозом. Безопасное и адекватное потребление фтора у взрослых – от 1,5 до 4 мг.

Свинец. Дефицит в эксперименте понижает рост, нарушает метаболизм железа, изменяет действия некоторых ферментов и концентрацию отдельных метаболитов в печени, связанных со статусом железа. Было обнаружено, что свинец увеличивает рост и улучшает гематокрит и концентрацию гемоглобина при дефиците железа у крыс, однако этот эффект был, вероятно, результатом фармакологического действия свинца. Механизм, с помощью которого свинец влияет на метаболизм железа, пока не определен.

Олово. Рацион с дефицитом олова у лабораторных животных вызывает недостаток роста, алопецию и изменение концентрации минералов в различных органах. Эти данные о роли дефицита олова нуждаются в подтверждении.

 

 







Date: 2015-07-02; view: 553; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.016 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию