Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Различные теории и гипотезы происхождения жизни на Земле





Первым возникло представление о сотворении мира как о «творческом акте» бога, и этот миф лежит в основе всех религий. В Библии говорится: «В начале Бог создал небо и землю»; на четвертый день Бог распоряжается: «Да произведет вода обильное множество одушевленных гадов, и птицы да летают над землей в небесном просторе». Вторая часть творения: «И создал Бог Человека по своему образу и подобию». И наконец: «Господь Бог создал женщину из ребра, которое взял от человека, и привел ее к человеку» (Бытие, 1:2-31; 2:21-22).

Как сборник различных по времени написания и по содержанию произведений древнееврейской культуры Библия (ее древнейшая часть известна с IX в. до н.э.) заимствовала представления о сотворении мира из древневавилонских и древнеегипетских мифов. Эти мифы — продукт чистой фантастики и мистицизма, но они показывают нам, какими были древние представления о происхождении мира. Впрочем, они властвовали умами людей на протяжении тысячелетий; многие верят в них даже и сегодня.

Древнегреческие философы Милетской школы (VIII-VI вв. до н.э.) принимали идею возникновения живых существ из воды либо из различных влажных или гниющих материалов, что было результатом непосредственного влияния вавилонской культуры. Но еще Фалес (624-547 гг. до н.э.) оспаривал мифологические представления и создал стихийно-материалистическое мировоззрение с элементами диалектики. Согласно Фалесу и его последователям, возникновение живых существ из воды произошло без какого-либо вмешательства духовных сил; жизнь есть свойство материи.

Яркое материалистическое развитие идеи самозорождения живых существ осуществляется позже в трудах Демокрита (460-370 гг. до н.э.) и Эпикура (341-270 гг. до н.э.). По мнению этих философов, возникновение живых существ — естественный процесс, результат природных сил, а не «акта творения» внешних сил.

Аристотель (384-322 гг. до н.э.) признавал бога за высшую форму и перводвигатель. Согласно Аристотелю, организмы могут происходить от организмов, но вместе с тем могут возникать и от неживой материи. Он считает, что материя лишь пассивное начало, возможность, которая может осуществиться только через определенную форму. Бытие содержит внутреннюю цель развития (энтелехию). По Аристотелю, именно энтелехия как целеустремленная внутренняя сущность вдыхает жизнь в материю. Взгляды Аристотеля почти на 2000 лет определяют судьбу идеи о самозарождении жизни.

Только в середине XVII в. тосканский врач Франческо Реди (1626-1698) предпринимает первые опыты по самозарождению. В 1668 г. он доказал, что белые черви, которые встречаются в мясе, являются личинками мух; если мясо или рыбу закрыть, пока они свежие, и предотвратить доступ мух, то они, хотя и сгниют, но не произведут червей.

Сегодня опыты Реди выглядят наивными, но они представляли собой первый прорыв фронта мистических представлений о формировании живых существ.

Почти через 200 лет после Реди в 1862 г. великий французский ученый Луи Пастер (1822-1895) публикует свои наблюдения по проблеме произвольного самозарождения. Он доказывает, что внезапное возникновение («спонтанное самозарождение») микробов в различных видах гниющих настоек или экстрактов не есть возникновение жизни. Гниение и брожение — это результат жизнедеятельности микроорганизмов, чьи зародыши внесены извне. Микробы — сложно устроенные организмы и могут производить себе подобные существа, то есть живое происходит от живого. Как ученый, который доверяет только результатам научных опытов, Пастер не делает глубоких выводов о происхождении жизни. Однако его исследования окончательно разрушили вековые предрассудки о спонтанном самозарождении.

Крушение учения о самозарождении привело некоторых известых ученых к мысли, что жизнь никогда не возникала, а, как материя или энергия, существовала вечно. Согласно этому представлению, «зародыши жизни» блуждают в космическом пространстве до тех пор, пока не попадают на подходящую по своим условиям планету — там они и дают начало биологической эволюции. Эту идею, высказанную еще в V в. до н.э. греческим философом Анаксагором, поддерживали Герман ван Гельмгольц (1821-1894) и Уильям Томсон (позднее лорд Кельвин; 1824-1907).

Гельмгольц говорил, что во Вселенной должно существовать много других миров, несущих жизнь, которые время от времени разрушаются при столкновении с другими космическими телами, а их обломки с живыми растениями и животными рассеиваются в пространстве.

Эта идея была тщательно разработана в 1908 г. шведским химиков Сванте Аррениусом (1859-1927), который назвал свою теорию панспермией. Развивая идеи Гельмгольца и Кельвина, он высказал несколько собственных соображений, предположив, что бактериальные споры и вирусы могут уноситься с планеты, где они существовали, под действием электростатических сил, а затем перемещаться в космическое пространство под давлением света звезд. Находясь в космическом пространстве, спора может осесть на частицу пыли; увеличив тем самым свою массу и преодолев давление света, она может попасть в окрестности ближайшей звезды и бужет захвачена одной из планет этой звезды. Таким образом, живая материя способна переноситься с планеты на планету, из одной звездной системы в другую.


Во второй половине XIX в. также высказывается предположение, что жизнь возникла в первичном океане из неорганического вещества в результате природного процесса.

3 мая 1924 г. на собрании Русского ботанического общества молодой советский ученый А. И. Опарин с новой точки зрения рассмотрел проблему возникновения жизни. Его доклад «О возникновении жизни» стал изходной точкой нового взгляда на вечную проблему «откуда мы пришли?». Пять лет спусля независимо от Опарина сходные идеи были развиты английским ученым Дж. Холдейном. Общим во взглядах Опарина и Холдейна является попытка объяснить возникновение жизни в результате химической эволюции на первичной Земле. Оба они подчеркивают огромную роль первичного океана как огромной химической лаборатории, в которой образовался «первичный бульон», а кроме того, и роль энзимов — органических молекул, которые многократно ускоряют нормальный ход химических процессов. В дополнение к этому Холдейн впервые высказывает идею, что первичная атмосфера на Земле, «вероятно, содержала очень мало или вообще не содержала кислорода».

В 1952 г. Гарольд Юри (1893-1981) самостоятельно пришел к выводу, что атмосфера молодой Земли имела восстановленный характер, то есть к завершению процесса формирования Земля имела сильно восстановленную атмосферу, так как ее основными составляющими были водород и полностью восстановленные формы углерода, азота и кислорода: метан, аммиак и пары воды. Гравитационное поле Земли не могло удержать легкий водород, — и он постепенно улетучился в космическое пространство. Вторичным следствием потери свободного водорода было постепенное окисление метана до диоксида углерода, а аммиака — до газообразного азота, которые через определенное время превратили атмосферу из восстановительной в окислительную. Юри предполагал, что именно в период улетучивания водорода, когда атмосфера находилась в промежуточном окислительно-восстановительном состоянии, на Земле могло образоваться в больших количествах сложное органическое вещество. По его оценкам, океан, по-видимому, представлял тогда собой однопроцентный раствор органических соединений. В результате возникла жизнь в ее самой примитивной форме.

 

2. Условия возникновения жизни.

Первое необходимое условие возникновения жизни имеет общекосмический характер. Оно связано с единой химической основой Вселенной. Жизнь развивается на этой единой основе, отражающей как количественные, так и качественные особенности отдельных химических эелементов. Это допущение приводит к заключению, что на любой планете во Вселенной, которая похожа на нашу по массе и расположению относительно центральной звезды, может возникнуть жизнь. «Согласно представлениям видного американского астронома Х.Шепли, во Вселенной имеется 108 космических тел (планет или звезд-лилипутов), на которых может возникнуть и существовать жизнь».[1]


Главное условие возникновения жизни имеет планетарную причину и определяется массой планеты, то есть жизнь, подобная земной, могла возникнуть и развиться на планете, масса которой имеет строго определенную величину. Если масса планеты больше чем 1/20 массы Солнца, на ней начинаются интенсивные ядерные реакции, что повышает ее температуру, и она светится, как звезда.

Из планет Солнечной системы кроме Земли подходящую массу имеют Венера и Марс, но там отсутствуют другие условия.

Особенно важным условием возникновения жизни является наличие воды. Значение воды для жизни исключительно. Это обусловлено ее специфиескими термическими особенностями: огромной теплоемкостью, слабой теплопроводностью, расширением при замерзании, хорошими свойствами как растворителя и др. Эти особенности обусловливают круговорот воды в природе, который играет очень важную роль в геологической истории Земли.

Сейчас имеются достаточно интересные сведения о наличии органических соединений во Вселенной. Источники этих сведений — естественные посланцы космоса на Землю, метеориты.

 

3. Метеориты и облака межзвездной пыли.

Метеориты — это малые космические тела, которые падают на Землю. Они являются осколками астероидов. Масса астероидов обычно превышает 50 кг. По составу различают каменные, железные и железнокаменные метеориты. По особенностям структуры и наличию сферических образований (хондр) некоторые каменные метеориты называются хондритами. Особый интерес представляют углистые хондриты, которые составляют 5% от общего числа метеоритов, ежегодно падающих на поверхность Земли.

Этому есть две причины:

¨ вероятность того, что при их изучении будут получены данные о добиологической эволюции органических молекул;

¨ неясность происхождения ряда элементов их структуры — до последнего времени некоторые исследователи считали минеральные образования в хондритах фосфатизированными микроорганизмами.

Эти интересные объекты представляют собой не претерпевшие существенных изменений «обломки протосолнечной туманности».[2] Они считаются первичными, поскольку образовались одновременно с Солнечной системой. Метеориты слишком малы, чтобы иметь собственную атмосферу, но по относительному содержанию нелетучих элементов углистые хондриты весьма сходны с Солнцем. Их минеральный состав свидетельствует о том, что они сформировались при низкой температуре и действию высоких температур никогда не подвергались. Они содержат до 20% воды (связанной в виде гидратов минералов) и до 10% органического вещества.


При исследовании двух метеоритов — первый упал в 1950 году возле Мори (шт. Кентукки, США), а второй — у Мерчисона (шт. Виктория, Австралия) в 1969 году — в их составе обнаружены отдельные аминокислоты — строительный материал белков в живых организмах. В метеорите Мерчисон открыты и жирные кислоты, из которых построены жиры в живых тканях.

Из аминокислот идентифицированы глутаминовая кислота, пролин, глицин, саркозин, аланин, валин и 2-метилаланин, а из жирных кислот — 17 видов.

Жирные кислоты земных организмов имеют четное количество углеродных атомов тогда как жирные кислоты с нечетным количеством атомов углерода нехарактерны для живых тканей на Земле. При химических реакциях, которые осуществляются без участия живых существ или веществ биогенного происхождения, образуется приблизительно равное количество жирных кислот с четным и нечетным количеством атомов углерода. То же показывают и результаты анализа метеорита Мерчисон.

Имеются убедительные свидетельства в пользу того, что аминокислоты и углеводородные соединения в метеорите Мерчисон имеют явно эндогенное происхождение и не являются результатом внешнего загрязнения:

* преобладание глицина над другими аминокислотами;

* положительные величины показателя 13С;

* наличие аминокислот, которые несвойственны белкам.

В период с 1968 по 1970 гг. с помощью радиоспектрометрии были открыты органические молекулы в межзвездном пространстве, что, безусловно, пополнило наши знания об органической химии Вселенной. Были опубликованы первые сообщения об открытии воды, формальдегида и аммиака в отдельных областях нашей Галактики.

Гидроксил ОН, формальдегид Н2СО и окись углерода СО — самые распространенные молекулы в межзвездной среде. Они обнаруживаются повсюду в Галактике, тогда как в отдельных межзвездных областях встречаются и другие соединения. В нашей Галактике существует около 3000 таких туманностей, плотность которых больше плотности межзвездной среды; молекулы здесь возникают чаще. Атомы углерода играют главную роль в образовании органических молекул, которые имеют в живых организмах основное значение.

При таком положении возникновение жизни выглядит неизбежным. В туманностях космического пространства уже при образовании звезд и планет возникают молекулы, которые приводят к формированию более сложных молекул аминокислот, жирных кислот, пуринов, пиримидинов и других главных составных элементов жизни.

4. Химическая эволюция.

Теория химической эволюции — современная теория происхождения жизни — также опирается на идею самозарождения. Однако, в основе ее лежит не внезапное возникновение живых существ на Земле, а образование химических соединений и систем, которые составляют живую материю. Она рассматривает химию древнейшей Земли, прежде всего химические реакции, протекавшие в примитивной атмосфере и в поверхностном слое воды, где, по всей вероятности, концентрировались легкие эелементы, составляющие основу живой материи, и поглощалось огромное количество солнечной энергии. Эта теория пытается ответить на вопрос: каким образом в ту далекую эпоху могли самопроизвольно возникнуть и сформироваться в живую систему органические соединения?

Большинство современных специалистов убеждены, что возникновение жизни в условиях первичной Земли есть естественный результат эволюции материи. Это убеждение основано на доказанном единстве химической основы жизни, построенной из нескольких простых и самых распространенных во Вселенной атомов (см. табл. 1).

Таблица 1. Относительное содержание основных химических элементов в космическом веществе и организмах.

         
  Вселенная Солнце Растения Животные
Водород 81,76 87,0 10,0 10,0
Гелий 18,17 12,9 * *
Азот 0,33 0,33 0,28 3,0
Углерод 0,33 0,33 3,0 18,0
Магний 0,33 0,33 0,03 0,05
Кислород 0,3 0,25 79,0 65,0
Сера 0,01 0,004 0,15 0,254
Железо 0,01 0,004 0,15 0,254
Кремний 0,01 0,004 0,15 0,254
Другие 0,001 0,4 7,49 3,696

 

Исключительное морфологическое разнообразие жизни (микроорганизмы, растения, животные) осуществляется на достаточно единообразной биохимической основе: нуклеиновые кислоты, белки, углеводы, жиры и несколько более редких соединений типа фосфатов.

Основные химические элементы, из которых посторена жизнь, — это углерод, водород, кислород, азот, сера и фосфор. Очевидно, организмы используют для своего строения простейшие и наиболее распространенные во Вселенной элементы, что обусловлено самой природой этих элементов. Например, атомы водорода, углерода, кислорода и азота имеют небольшие размеры и способны образовывать устойчивые соединения с двух- и трехкратными связями, что повышает их реакционную способность. Образование сложных полимеров, без которых возникновение и развитие жизни вообще невозможны, связано со специфическими химическими особенностями углерода.

Другие два биогенных элемента — сера и фосфор — присутствуют в относительно малых количествах, но их роль для жизни особенно важна. Химические свойства этих элементов также дают возможность образования кратных химических связей. Сера входит в состав белков, а фосфор — составная часть нуклеиновых кислот.

Кроме этих шести основных химических элементов в постороении организмов в малых количествах участвуют натрий, калий, магний, кальций, хлор, а также микроэлементы: железо, марганец, кобальт, медь, цинк и небольшие следы алюминия, бора, ванадия, иода и молибдена. Следует отметить и некоторые исключительно редкие атомы, которые встречаются случайно и в ничтожных количествах.

Следовательно, химическая основа жизни разнообразится еще 15 химическими элементами, которые вместе с шестью основными биогенными элементами участвуют в различных соотношениях в строении и осуществлении функций живых организмов. Этот факт особенно показателен в двух отношениях: 1) как доказательство единства происхождения жизни и 2) в том, что сама жизнь, являющаяся результатом самоорганизации материи, включила в эволюцию биологических макромолекул не только все самые распространенные элементы, но и все атомы, которые особенно пригодны для осуществления жизненных функций (например, фосфор, железо, иод и др.). Как отмечает советский ученый М.Камшилов, «для осуществления функций жизни важны химические свойства ее атомов, к которым, в частности, относятся квантовые особенности». Не только структура, обмен веществ, но даже и механические действия живых организмов зависят от составляющих их молекул. Это, однако, не означает, что жизнь может быть сведена просто к химическим закономерностям.

Жизнь — одно из сложнейших, если не самое сложное явление природы. Для нее особенно характерны обмен веществ и воспроизведение, а особенности более высоких уровней ее самоорганизации обусловлены строением более низких уровней.

Современная теория происхождения жизни основана на идее о том, что биологические молекулы могли возникнуть в далеком геологическом прошлом неорганическим путем. Сложную химическую эволюцию обычно выражают такой обобщенной схемой: атомы ® простые соединения ® простые биоорганические соединения ® макромолекулы ® организованные системы. Начало этой эволюции положено нуклеосинтезом в Солнечной системе, когда образовались основные элементы, в том числе и биогенные. Начальное состояние — нуклеосинтез — быстро переходит в процесс образования различных по сложности химических соединений. Этот процесс протекает в условиях первичной Земли со все нарастающей сложностью, обусловленной общекосмическими и конкретными планетарными предпосылками.

 

5. Синтез органических молекул.

Издавна было известно, что химики могут синтезировать органические вещества, но идея постановки отдельных опытов по синтезу органических веществ путем воспроизведения условий первичной Земли представлялась не менее фантастичной, чем многие гипотезы. Разумеется, никто не считает, что можно точно воспроизвести условия гигантской естественной химической лаборатории, какой была Земля 4,5 - 5 млрд. лет назад. Речь идет о приблизительном моделировании теоретически предполагаемых условий первичной Земли: бескислородная атмосфера, наличие исходных химических соединений: метана, воды, аммиака и источника (источников) энергии.

Первый целенаправленный опыт по синтезу органических молекул, пригодных для развития жизни, из предполагаемых исходных компонентов ранней земной атмосферы был проведен В.Гротом и Х.Зюссом в 1938 году. После облучения ультрафиолетовыми лучами газовой смеси СО2 и Н2О они получили формальдегид и глиоксал. По мнению Грота и Зюсса, результаты этих опытов объясняют образование некоторых органических соединений, «которые, вероятно, были необходимой предпосылкой эволюции органической жизни».

Позже У. Харрисон, М. Кальвин и другие (1951) подвергают экспериментальной проверке идеи Опарина и Холдейна. Они облучали a-частицами водные растворы, содержащие ионы двухвалентного железа, которые находились в равновесии с газовой смесью двуокиси углерода и водорода. Получены формальдегид, муравьиная и янтарная кислоты.

В 1953 году [3] Стэнли Миллер, аспирант-астрофизик знаменитого Г. Юри в Чикагском университете проводит опыт, который позже был назван классическим. Газовая смесь метана, аммиака, водяных паров и водорода (доступа свободного кислорода в колбу не было) подвергалась Миллером воздействию сильных электрических разрядов, при этом получались аминокислоты, сахара и ряд других органических соединений. Огромное значение опыта Миллера состоит в доказательстве возможности неорганического пути образования белковоподобных молекул в условиях первичной Земли.

Опыт Миллера обогатил науку и послужил сильным толчком к новым исследованиям. Т. Павловская и А. Паскинский в Институте биохимии АН СССР своими опытами и термодинамическими расчетами доказали возможность образования сложных органических веществ в условиях первичной Земли. А.Уилсон, добавляя серу к исходной смеси Миллера, получил крупные полимерные молекулы с 20 и более атомами углерода. С. Поннамперума использовал в опытах ультрафиолетовую лампу как источник энергии — ведь в условиях молодой Земли ультрафиолетовое излучение давало основную энергию. Поннамперума сумел получить не только аминокислоты и пурины (строительные блоки соответственно для белков и нуклеиновых кислот), но и синтезировал эти молекулы в полимеры. С.Фокс из Института молекулярной эволюции в Майами синтезировал почти все аминокислоты, без которых жизнь была бы невозможна. Фокс «сварил» из аминокислот так называемые «термические протеноиды», близкие по составу к белкам. При этом протеноиды превратились в приготовленном Фоксом бульоне в тонкие капли, подобные коацерватам Опарина. Именно с таких образований началась, согласно Опарину, жизнь на Земле.

Список экспериментальных исследований очень велик. Основные их результаты показывают, что химическая эволюция не плод досужего ума, а закономерный естественный процесс, который закладывает основы жизни.







Date: 2015-07-17; view: 682; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.015 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию