Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Поиск взаимосвязей между переменными
Перекрестная группировка по двум и более признакам — прямой путь к обнаружению возможных взаимосвязей между переменными. Для этого нужно составить таблицу определенным образом, например, подсчитать пропорции частот одного признака в зависимости от частот другого. Для неискушенного читателя при изложении результатов социологических обследований разумнее использовать процентные отношения группировок. В научной публикации следует указывать статистические критерии взаимосвязей и их значимости. Правила процентирования6 вовсе не так просты, как может показаться неопытному исследователю. Основной вопрос: принимать ли за 100% данные по строке или по столбцу? 6 Подробно эти правила излагает X. Хейман [339]
Это зависит от двух обстоятельств: от характера выборки обследованных и от логики анализа. Выборка может быть либо репрезентативной (выборочная совокупность есть микромодель генеральной совокупности), либо нерепрезентативной. В последнем случае нам как минимум неизвестны пропорции существенных характеристик в генеральной совокупности, или мы знаем, что эти пропорции в выборке не соблюдаются. Возможна двоякая логика анализа "от причин к следствию" или "от следствий к причинам", что определяется гипотезой и содержанием данных. Если выборка представительна и отражает пропорции изучаемых групп в генеральной совокупности (данного завода, например), тогда можно вести двоякий анализ данных: по логике "от причин к следствию" и "от следствия к причинам". Рассмотрим пример. Предположим, что 1000 человек, работающих на акционерном предприятии, где акции принадлежат исключительно его сотрудникам, распределились в зависимости от того, участвуют или не участвуют они в технической и организационной модернизации производства, следующий образом (табл. 10).
Проведем анализ по логике "от возможных причин — к следствию". Предпосылкой более или менее активного участия в разработке нововведений может быть статус работника, тогда как вовлеченность в дела производства сама по себе не может быть причиной того или иного статуса, это — возможное следствие первого фактора. При таком подходе за 100% следует брать данные по строке (табл. 10, а).
Вывод: наиболее активные инноваторы — ИГР, наименее активные — служащие. Статус инженерно-технических работников способствует их модернизационной активности в большей мере, чем положение служащих или рабочих данного предприятия. Теперь проведем анализ по логике "от следствия к причинам": 100% суммируются в столбце (табл. 10, б).
С логической точки зрения здесь проверяется гипотеза о вкладе каждой категории работников в разработку нововведения, а не гипотеза об их соотносительной активности. Вывод из табл. 10, б: вклад рабочих — наибольший, так как они преобладают в составе персонала предприятия. Об относительной же активности рабочих по этим расчетам мы судить не можем.7 7 Имеется в виду, конечно, не значимость, качество предложенных Идей, но их численность. Предложения специалистов-инженеров или администраторов-служащих могут быть более радикальными, чем предложения рабочих.
Итак, ретроспективный и проектирующий анализы предполагают различные по содержанию выводы.
В репрезентативных выборках возможно проценти-рование "по диагонали" таблицы. Например, для табл. 6 Таблица 10, а Date: 2015-07-17; view: 372; Нарушение авторских прав |