Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Особенности синергетического подхода





Синергетические эффекты. Самораскипание ванн.

 

Студент: Рахимов Р.Р.

 

Группа: МТЗМ-220105

 

Преподаватель: Гилева Л.Ю.

 

Екатеринбург

 

СОДЕРЖАНИЕ:

ВВЕДЕНИЕ........................................................................................................................2

1. Особенности синергетического подхода....................................................................3

2. Самораскипание сталеплавильной ванны................................................................13

ВВЕДЕНИЕ

При исследовании сложных объектов с целью выбора способов рационального воздействия на них возможны два подхода: либо навязать системе необходимое поведение (например, программу), либо действовать, опираясь прежде всего на знание внутренних свойств системы и законов ее саморазвития. Первый подход лежит в основе автоматического регулирования, хотя и здесь имеется всемерное стремление получить адекватные характеристики (модели) объекта по управляемым каналам. Второй подход лег в основу недавно сформировавшегося раздела науки, получившего название теории самоорганизации или синергетики.

 

 

Особенности синергетического подхода.

С момента выхода в свет в 1948 году знаменитой книги Норберта Винера "Кибернетика или управление и связь в животном и машине" кибернетика заявила о себе как междисциплинарная наука, ставящая целью изучение передачи, преобразования информации и управле­ния независимо от физической природы объектов. Богатство и глуби­на идей, изложенных в этой и других книгах Н. Винера, поражает, особенно если учесть, что они высказаны более полувека назад. При этом наряду с такими крупными математическими разработками, как знаменитое уравнение статистической динамики (уравнение Винера-Хопффа), не меньший интерес представляют его мировоззренческие взгляды, особенно связанные с неизбежным возрастанием энтропии и ролью информации как возможной альтернативы этого процесса. Одна из важнейших проблем современного естествознания - соотно­шение необходимости и случайности, детерминизма и вероятности - занимала важное место в философских представлениях Н. Винера. По праву считая себя математиком, он в то же время видел в себе продол­жателя замыслов американского физика У. Дж. Гиббса, которого на­звал родоначальником стохастического естествознания.

В конце 70-х — начале 80-х годов теперь уже прошлого столетия стало оформляться еще одно научное направление методологическо­го плана, внешне созвучное с кибернетикой и имеющее пересекаю­щиеся направления исследования, но в то же время имеющее разли­чия даже в плане греческой этимологии: с одной стороны — рулевой, с другой — кооперативно. Это направление получило на­звание синергетики.

В последние годы накопилось много примеров физических и химических систем, в которых из критических состояний возникают высокоупорядоченные пространственные или пространственно-вре­менные структуры, как и в живых организмах. Такие системы могут функционировать лишь за счет подвода к ним потока энергии или вещества. В отличие от машин, сконструированных человеком (в том числе систем автоматического регулирования), которые рассчитаны на определенный тип функционирования, вышеупомянутые структу­ры образуются спонтанно, то есть они самоорганизуются. При этом оказалось неожиданным, что большое число таких систем проявляет удивительные аналогии в поведении при переходе от неупорядочен­ного состояния в упорядоченное, что свидетельствует в пользу того, что функционирование таких систем подчиняется одним и тем же фундаментальным принципам. Во всех рассматриваемых системах процесс самоорганизации обязательно идет с участием большого чис­ла объектов (атомов, молекул или более сложных образований) и, следовательно, определяется совокупным кооперативным действием. Термин «синергетика» предложил ввести профессор Штутгардского университета Герман Хакен. Это название происходит от греческого synergeia, что означает совместное или кооперативное действие. Впер­вые же этот термин был введен именно в этом смысле английским физиологом Шерринктоном около ста лет назад в ходе исследования мышечной системы управления и согласованного управления со сто­роны спинного мозга. Г. Хакен предложил таким термином называть совокупный коллективный (или кооперативный) эффект взаимодей­ствия большого числа подсистем, приводящих к образованию устой­чивых структур, то есть к самоорганизации в сложных системах.

В своей книге «Синергетика», выпущенной в Германии в 1978 г., а в русском переводе в 1980 г., Г. Хакен отталкивается от фунда­ментальных понятий: вероятности, информации, случайности, необ­ходимости. С помощью достаточно строгих математических выводов он подходит к основным проблемам самоорганизации, то есть к меха­низму перехода от хаоса к упорядоченности и обратно, затрагивает также вопросы теории фазовых переходов в равновесных и неравно­весных системах, а затем иллюстрирует их на проблемах физики, хи­мии, биологии и социологии. Значительную роль в этой книге играет анализ устойчивости динамических систем и описание флуктуаций. Для этой цели применяется математический аппарат, используемый для анализа динамических процессов в классической механике и тео­рии управления, в сочетании с аппаратом теории вероятности.

Другая школа, возглавляемая профессором свободного униерситета Брюсселе Ильёй Пригожиным, который в течение многих лет занимал пост президента Королевской академии наук, предпочитает для обозначения тех же явлений (процессов) использовать термин "самоорганизация". В основу работ этой школы положена термодинамическая теория структур устойчивости и флуктуаций. И. Пригожин является одним из основателей современной теории необратимых процессов и ряда фундаментальных работ по вопросам термодинамики статистической физики. За эти работы в 1977 г. ему была присуждена Нобелевская премия по химии. Объяснить механизм самопроизвольного возрастания упорядоченности с позиций классической термодинамики оказалось невозможным. Более адекватной теоретической основой для этой цели явилась обобщенная термодинамика необрати­мых процессов, разработанная усилиями этой школы. «Переход oт термодинамики (правильнее термостатики) равновесных состояний к термодинамике неравновесных процессов, — подчеркивает И. Пригожин, — несомненно знаменует прогресс развития ряда областей на­уки». В работах этой научной школы дана довольно стройная теория, позволяющая определить ряд условий, при которых возможна самоорганизация, в частности, рассчитать степень отклонения от термодинамического равновесия и условия устойчивости неравновесных стационарных состояний, которым соответствует новый тип динами­ческих состояний материи, названных И. Пригожиным диссипатив­ными структурами, то есть структурами, связанными с рассеиванием энергии и могущими существовать только при условии эффективного использования энергии из окружающей среды.

Как показывает обобщенная термодинамика, возникновение но­вой (динамической) структуры (переход от одного типа организации к другому) является результатом неустойчивости. При этом большую роль могут играть флуктуации, которые неизбежно возникают в си­стемах, обладающих многими степенями свободы, и представляют собой случайные явления. То есть флуктуации это, по существу, уплотнения или неравномерность распределения каких-либо свойств (концентрации, температуры). Поведение же системы в целом (боль­шом) может описываться с помощью детерминистических законов. Наиболее адекватным математическим аппаратом моделей самоорга­низации являются нелинейные дифференциальные уравнения.

Каче­ственная теория дифференциальных уравнений, нашедшая дальней­шее развитие в теории катастроф и теории бифуркаций, позволяет определить условия, при которых возможен выход системы в режим самоорганизации, в частности, условия выхода на границу устойчи­вости и в область неравновесных стационарных состояний. Таким об­разом, несмотря на некоторые определенные отличия в подходах, обе школы основное внимание уделяют анализу устойчивости и флуктуа­ций. Нас, естественно, в первую очередь интересует приложение этих идей для анализа физико-химических процессов, протекающих в ме­таллургических агрегатах. Ниже мы попытаемся проанализировать, чем же отличаются подходы кибернетики (по крайней мере, те из них, которые связаны с управлением) от подходов синергетики. Процессы самоорганизации изучались, в частности, в рамках кибернетики, но там шла речь в основном об ор­ганизации, навязанной объекту извне (например, охват обрат­ной связью). При этом имели дело главным образом с техни­ческими системами, построен­ными человеком для достиже­ния вполне определенных целей управления или регулирования.

При описании объектов здесь чаще всего использовался функ­циональный (поведенческий) подход и мало обращалось вни­мания на конкретные механиз­мы процессов, протекающих внутри объекта. На рисунке предоставлена схема одноконтурной си­стемы регулирования с обратной связью.

 

 


 

Как видно из соотношения, даже в этом сравнительно про­стом случае одноконтурного регулирования знание особенности сво­бодного движения объекта, то есть передаточной функции объ­екта, является необходимым условием достижения приемлемого качества регулирования. Причем оценка динамических свойств объ­екта Wo(p) в этом случае, как правило, осуществляется по результатам эксперимента для каждого канала управления в отдельности. Харак­терным для этого подхода является то, что основной упор здесь дела­ется на роль рулевого (это есть первоначальный смысл слова «кибер­нетика»), то есть на роль регулятора. Благодаря наличию регулятора, в некоторых случаях можно поступиться более подробным изучением свойств объекта. В ряде случаев это делается сознательно. Например в тоталитарной социалистической экономике необходимость поддержания задания (плана) любой ценой на всех уровнях народного хо­зяйства от государственного до каждого конкретного предприятия была доведена до абсурда. Часто это делалось без учета возможностей конкретного объекта, что приводило либо к необоснованно большим затратам на выполнение нереального задания, либо к искажению отчетности при невозможности его выполнения.

Надо также отметить, что существующая теория управления, а главным образом ее часть, касающаяся теории автоматического регу­лирования, сформировалась преимущественно на задачах управления полетом, где основное внимание уделялось выделению программной и возмущенной траекторий и как можно более точному отслеживанию программной траектории регулятором, что позволяет ограничиться относительно простыми математическими моделями для каждого отдельного канала управления (моделями в малом). Для решения подобного рода задач такой подход является адекватным. Многолетние попытки перенести такой подход на металлургические объекты не увенчались успехом. В качестве немаловажного обстоятельства при этом следует признать тот факт, что в системе металл - шлак - газ, являющейся основой большинства металлургических процессов, имеет место самопроизвольное упорядочение по ряду взаимосвязанных параметров, что требует иных подходов к их управлению.

Попытаемся на примере управления обезуглероживанием и на­гревом мартеновской и конвертерной ванн показать неэффектив­ность кибернетического подхода (точнее, управления по обратной связи) к управлению таким объектом. Представим себе, что мы реши­ли управлять процессом обезуглероживания и нагрева металла по заданным программным траекториям Т3 и С3 аналогично тому, как автопилот ведет по заданной траектории летательный аппа­рат. При этом если траектории высоты и курса для лета­тельного аппарата жестко заданы и практически независимы друг от друга, то траектории обезуглероживания и нагрева для случая марте­новской и конвертерной ванн, во-первых, не могут быть заранее за­даны, так как зависят от характера протекания предыдущих периодов (в частности, периода плавления), во-вторых, зависят друг от друга.

Они как бы погружены в объект и связаны друг с другом через внутренние параметры объекта. Так, например, траектория нагрева металла связана с траекторией обезуглероживания через влияние содержания углерода на температуру плавления и необходимый перегрев над этой температурой. При малом перегреве над линией ликви­дус снижается скорость всех процессов, в том числе усвоение шлакообразующих, а при очень существенном ее превышении (на­пример, более 120 °С) резко увеличиваются затраты энергии и насы­щение металла газами. Появляется вероятность аварийных вскипа­ний и выбросов металла и шлака. Кроме того, увеличение скорости обезуглероживания, как, например, на участке в — г, автома­тически ведет к повышению скорости нагрева. Это связано с увеличением работы перемешивания за счет увеличения выделения пузырьков СО, а также повышением теплового КПД печи за счет бо­лее интенсивного перемешивания металла и шлака. Например, по­пытка вести процесс на этом участке по заданной траектории скорее всего не увенчалась бы успехом или привела к необоснован­ным дополнительным затратам в виде увеличения расхода топлива для торможения процесса через снижение окислительной способно­сти газовой фазы печи.

Управление сталеплавильным процессом по заданным программным траекториям

Именно на этом отрезке времени чаще всего происходит само­произвольное ускорение обезуглероживания (так называемый эф­фект самораскипания ванны), при котором наблюдается резкое (в два-три раза) увеличение скорости обезуглероживания, причем не только без дополнителен трат, а даже с экономией энергоресурсов, так как при этом можно уменьшить расход топлива, повысив величину окислительной способности печи. Таким образом, на этом примере достаточно убедительно показано, что управлять таким сложны объектом по заранее заданным ему траекториям неэффективно. Более целесообразно дать возможность такому объекту прийти в заданные точки по таким траекториям, по которым он «хочет» с учетом его собственных внутренних свойств и самосогласованного поведения. То есть надо как бы знать собственную функцию объекта и согласовывать внешние воздействия с этой функцией. Имен­но в этом случае можно достичь конечной цели с наименьшими затра­тами. При выполнении этих условий относительно малые по величине «резонансные» воздействия будут оказывать существенные влияния на управляемый объект. Использование свойств самоорганизации может сыграть большую роль в решении задач управления, в том числе метал­лургическими процессами.

Теперь подведем итоги сопоставления подходов кибернетики и синергетики. Если в кибернетике основное внимание уделяется роли рулевого (регулятора), то есть, по существу, насилию над объектом (именно поэтому в тоталитарной системе перешли в свое время от полного отвержения к полному возвеличиванию роли кибернетики), то в синергетике основная идея заключается в выборе таких воздей­ствий на систему, которые были бы согласованными с ее внутренними свойствами. Если в кибернетических системах управления основной целью является стабилизация системы относительно заданного уровня или программного режима, то в синергетике основной зада­чей является определение условий перехода системы в неустойчивое состояние, а через него выход в неравновесное стационарное состо­яние, позволяющее вывести систему на новый, более высокий струк­турный уровень. Эти вопросы являются ключевыми при анализе са­моорганизующихся систем.

На рисунке представлена взаимосвязь фундаментальных категорий природы (случайности, необходимости и неравновесности) с условиями, способствующими возникновению самоорганизации.

 

Рассмотрим вначале основные признаки (условия), отличающие систему, в которой, в принципе, возможна самоорганизация. Можно выделить прежде всего два таких условия:

1) система должна быть открытой, то есть обмениваться веществом или энер­гией с окружающей средой;

2) система должна обладать опреде­ленным порядком сложности и способ­ности к взаимодействию большого числа элементов (подсистем).

Поведение таких систем в будущем зависит не только от их состояния в на­стоящее время, но и от их предыстории.


Как известно, эволюция в изолиро­ванной системе невозможна, так как сте­пень упорядоченности в ней может только понижаться или оставаться постоянной. И. Пригожиным предложен расширенный вариант вто­рого закона термодинамики, применимый как к замкнутым, так и к открытым системам. Энтропия здесь представлена следующим образом:

Под организацией мы понимаем поведение объекта под воздей­ствием достаточно жесткого упорядочивания извне по четкому, зара­нее известному алгоритму. Примером может служить ведение технологического процесса по четко отлаженной технологической инструкции, распределение ресурсов и структура промышленности в плановой тоталитарной экономике, структура армии и так далее.

В случае самоорганизации тоже имеется внешнее воздействие, но здесь под внешним воздействием понимается только достаточно мощный поток вещества или энергии, поступающей в объект из внеш­ней среды. Структурное же упорядочение системы в этом случае про­исходит спонтанно (самопроизвольно). Причем, как правило, невоз­можно детерминированно указать момент этого перехода.

Покажем возможность и плодотворность использования основных идей синергетики на некоторых примерах, имеющих отношение к металлургии. Объектами исследования синергетики, как правило, является достаточно сложные процессы, описываемые нелинейными диференциальными уравнениями. Линейные объекты обладают. как известно свойством суперпозиции или аддитивности.

Для объектов, которым свойственна самоорганизация, характерно, что целое может обладать свойствами, которых нет ни у одной из частей. Именно благодаря этому при опреде­ленном сочетании внутренних параметров объекта и воздействий внешней среды, в том числе начальных условий, могут быть обнаружены качественно новые режимы, процессы и состояния, представляющие теоретический и практический интерес.

Date: 2015-07-17; view: 920; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию