Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Математика: решение задач
Задачи — это математика в реальной жизни. Это — конкретная логика. Собственно, к решению реальных задач и должен, по-моему, сводиться смысл изучения математики. Однако, тут мы видим знакомый симптом: их доля в учебниках уменьшается к старшим классам. Чем более сложна школьная математика, тем она более абстрактна и безлика. Посему, задачами пришлось заниматься мало. Но, кое-какие выводы сделать мы успели. 1. Нельзя решать задачу, пока не отработаны все нужные для её решения навыки. Вы не научите решать задачи с пропорцией ученика, который не понял всё о дробях и не умеет их умножать и делить. Прежде всего, он должен свободно рисовать и рассчитывать саму пропорцию — это отдельный приём, отдельный навык. Задача — это, как бы, приведение примера из жизни. Вспомним: в учебном цикле контрольного листа это следует всегда после полного понимания и отработки навыка. Нельзя привести пример того, чего не понял или не можешь. 2. Продукт освоения определённых задач — не просто решение задач, а умение составлять задачи этого типа. Определённо, если не можешь составить задачу — значит, не понимаешь её до конца. 3. Поскольку задачи — кусочки жизни, то главный способ работы с ними — масса. Собственно, смысл работы с задачей — представить её, увидеть, понять, как процесс. Решение — второстепенно. Решение — естественный побочный продукт хорошего видения процесса. Видеть задачу в массе — значит, видеть и решение. Посему, любую задачу нужно, прежде всего, рисовать, а многие — показывать на предметах. Рисовать задачи — самый ценный навык в их решении. Довольно быстро он переходит с бумаги в ум. Человек начинает видеть процесс в уме — и решение видно так же хорошо. 4. Обычно задачи расцениваются более, как средство контроля. Напротив! Это — средство развития. Решение разных задач — лучший способ закрепить навыки. Но, сама методика решения — тоже навык. Разные типы задач имеют свою методику решения. И, прежде, чем давать задачу на контроль, нужно обучить решению именно таких задач. Если мы говорим о настоящем обучении — с массой, пониманием и тренировкой — то это никак не повредит сообразительности. А вот, когда мы требуем то, чему не научили — от сообразительности часто вообще ничего не остаётся. 5. Задача — это не арифметика или алгебра, а логический процесс. Смысл — увидеть и понять логику задачи. Затем, увидеть последовательность действий. Когда процесс решения понят, задачу можно считать решённой. Дальше идёт чисто механическая, обслуживающая работа — решение действий. Это, всего лишь, вычисления. Не надо их путать с самой задачей. В принципе, для них существуют компьютеры. Решение действий — вовсе не то, на что должно тратиться время и внимание! Вычислять надо автоматически, легко. Мы часто не понимаем этого и «помогаем решать задачу», позволяя человечку корпеть над вычислениями. Это — грубое нарушение постепенности! Если действия решаются медленно и с трудом — значит, вам не до задач! Значит, надо вернуться в началку, найти дырки и отработать, наконец, это деление в столбик или умножение на минус три пятых! Сейчас вряд ли можно утверждать, что все должны вычислять всё в уме. На партах лежат калькуляторы. Не могу уверенно сказать, что это плохо. Но, думаю, что, для задач школьного уровня, компьютер должен быть создан в голове. Посему, будем исходить из требований конкретной школы. В уме ли, на калькуляторе — вычисления не должны сильно отвлекать от логического решения задач. Итак, вот каким может быть тренировочный цикл для задач. 1. Прочтение и прояснение всех слов в условии задачи. 2. Создание массы условия и процесса, происходящего в задаче. Видение и понимание всего процесса. 3. Выработка последовательности действий для решения, если необходимо — с массой. 4. Вычисление действий и получение ответа. Думаете, это результат? Задачи — да. Обучения — далеко нет! 5. Решение этой же задачи столько раз, сколько нужно до состояния «без задержек» — свободно и бегло. Обычно, хватает 2-3 раз. 6. Решение ещё 3-5 задач того же типа — до свободной беглости. Если беглость не получается — ищите пробелы раньше! 7. Придумывание трёх задач такого типа — с их быстрым решением. Вот теперь, получен учебный продукт — умение работать с такими задачами. Теперь, человечек решает задачи не то, что без отвращения — с упоением! Он парит над ними, управляет, властвует! Товарищи учителя, вы именно так щёлкаете задачи, которые задаёте ученикам? Нет?.. Так научитесь их решать вместе с ними — и вы увидите, чем отличается учебный результат от текучки! Ясно: на задачи других типов будет уходить всё меньше времени и сил — выработался навык логического решения задач. И, чем больше типов задач добавляется в копилку достигнутых учебных результатов, тем обширнее и универсальнее этот навык — навык решения проблем и изобретения логических выходов. Недоработанные навыки и пропущенные слова порождают другие пробелы и дырки, тормозят друг друга, размножаются, и в уме вырастает глупость и неспособность. Навыки, отработанные до результата, имеют обратное магическое свойство. Они поддерживают и расширяют друг друга. Вычислительные навыки помогают логическим. В уме создаётся прогрессивно растущая сумма развитых навыков решения. Другими словами — интеллект. Вот такая вот, братцы, альтернативочка! Что же происходит в реальной жизни? В реальной жизни — компьютерная игрушка «Дэнди»: сделал не так — и потерял «жизнь». «Папа, да, знаю я эти дроби! Да, знаю я, как тут делить!» Знаешь — а сидишь и соображаешь по полминуты. А задержалась дольше десяти секунд — потеряла «жизнь»! Ты знаешь — но не умеешь, солнышко моё. Ну, попробуй, пройди эту игру. Хило?.. Так что, вот тебе ещё лист, и учись проходить без потерь! А что происходит в школе? А в школе мы ставим пятёрки… за что бы вы думали? За правильный ответ! Чтобы его получить, не нужно вообще никакого умения. К чему же мы готовим своих детей, братцы?..
Date: 2016-08-30; view: 309; Нарушение авторских прав |