Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Мартенситное превращение





 

Мартенситное превращение в легированных сталях и сплавах развивается при низких температурах и больших сте­пенях переохлаждения относительно равновесной температуры начала a®g – перехода. При температурах мартенситного превращения полностью подавлены диффузионные перемещения как металлических атомов железа и легиру­ющих элементов, так и металлоидных атомов углерода и азота, поэтому по своему механизму. Мартенситное превращение в сталях и сплавах является бездиффузионным.

Мартенситное превращение может протекать в углеродсодержащих легированных сталях, безуглеродистых легированных сталях, а также бинарных сплавах железо–легирующий элемент. В результате мартенситного превращения обычно образуется пересыщенный твердый раствор на, основе a–железа, причем в углеродсодержащих сталях твердый раствор пересыщен в основном углеродом, а в безуглеродистых легированных сталях – легирующими элементами. Содержание углерода и легирующих элементов в мартенсите такое же, как и в исходном аустените.

Кинетика мартенситного превращения в большинстве углеродистых, а также легированных конструкционных и инструментальных сталях носит атермический характер.

Типичная кривая атермического мартенситного превращения приведена на рис. 2.5.

Как правило, атермическое мартенситное превращение происходит в сталях, мартенситная точка Мн которых лежит выше комнатной температуры.

Разновидностью атермического мартенситного превращения является взрывное мартенситное превращение, при котором некоторое количество мартенсита образуется мгновенно при температуре Мн. Взрывное мартенситное превращение наблюдается в железоникелевых сплавах и сталях с мартенситной точкой ниже комнатной температуры.

 

 

Рисунок 2.5 – Мартенситная кривая при атермическом характере превращения

 

В сталях с атермической кинетикой мартенситного пре­вращения наблюдается явление стабилизации аустенита. Если при закалке стали сделать промежуточную выдержку в мартенситном интервале температур, то общее количество мартенсита будет меньше, а количество остаточного аустенита больше, чем в случае непрерывного охлаждения до точки Мн, при этом с увеличением продолжительности выдержки это различие будет расти. После изотермической выдержки в мартенситном интервале образование мартенсита при последующем охлаждении начинается не при этой температуре, а при более низкой, причем чем меньше температура промежуточной выдержки, тем ниже температура, начиная с которой вновь начинается образование мартенсита. Явление стабилизации аустенита может оказаться и при охлаждении стали с непрерывными, но разными скоростями. Так, в легированных сталях мартенситного класса, закаливаемых на воздухе, количество остаточного аустенита намного больше, чем в этих же сталях после за­калки в масле или в воде. При этом вследствие того, что углерод является элементом, наиболее сильно понижаю­щим мартенситные точки, в высокоуглеродистых сталях после замедленного охлаждения (например, при ступенчатой закалке) содержание остаточного аустенита может превышать 20 %.

В сплавах на основе Fе–Сr–Ni и Fе–Ni–Мn, имеющих мартенситную точку ниже комнатной температуры, мартенситное превращение может быть полностью подавлено быстрым охлаждением до температуры жидкого азота (–196°С). Мартенситное превращение в таких сплавах идет при нагреве до более высоких температур и носит изотермический характер. Изотермическое мар­тенситное превращение в этих сплавах может протекать и при ступенчатом охлаждении с изотермическими остановками. Наиболее полно изотермическое мартенситное превращение исследовано в безуглеродистых сплавах железа с 23 % Ni и 3–4 % Мn. В отличие от диффузионного перлитного превращения аустени­та мартенситное превращение в изотерми­ческих условиях никогда не идет до конца.

Влияние различного рода воздействий на аустенит может в значительной степени влиять на кинетику мартенситного превращения. Деформация аустенита при температурах выше Мн может приводить к образованию мартенсита как в упругой, так и в пластической области. Мартенсит, образующийся при деформации в упругой области, называют мартенситом напряжения, а мартенсит, получающийся под действием пластической деформации, мартенситом деформации. В отличие от них мартенсит, образующийся при охлаждении в мартенситном интервале температур, называется мартенситом охлаждения.

Верхней температурной границей образования мартен­сита при пластической деформации является точка Мд, выше которой мартенсит не образуется при любых степенях деформации. Температура Мд всегда лежит ниже точки То, отвечающей равенству свободных энергий аустенита и мартенсита (рис. 2.6).


 

 

 

Рисунок 2.6 – Влияние температуры на изменение свободной энергии аустенита и мартенсита

 

Аустенит, в котором при пластической деформации наблюдается g®a–переход, часто называют метастабильным (по отношению к пластической деформа­ции) аустенитом.

При пластической деформации легированных марганцевых, хромомарганцевых и хромоникелевых сталей может наблюдаться мартенситное превращение g®e®a, при котором образуется промежуточный e–мартенсит с гексагональной плотноупакованной решеткой, который затем может переходить в a–мартенсит с ОЦК решеткой. Такое превращение наблюдается в тех случаях, когда сплавы имеют низкую энергию дефектов упаковки с сильным расщеплением дислокации, которые являются зародышами образования e–фазы с гексагональной решеткой

Влияние пластической деформации аустенита на последующее мартенситное превращение ниже точки Ми зависит от степени деформации. Небольшая пластическая деформация может инициировать мартенситное превращение, наоборот, большая степень деформации приводит к торможению мартенситного превращения как при непре­рывном охлаждении, так и изотермическом.

На рис. 2.7 показано влияние большой пластической деформации (30 %) аустенита на образование мартенсита при охлаждении в стали с 1,1 % С и 2,7 % Мn, а также при изотермических выдержках в сплаве типа Х17Н9. 30 %-я пластическая деформация, хотя и вызвала образование мартенсита порядка 10 %, уменьшила общее количество мартенсита, полученное при непрерывном охлаждении, от 70 (без деформации) до 48 % (после деформации). Пластическая деформация на 8 % вызвала увеличение количества мартенсита, полученного в сплаве типа Х17Н9 при изотермических выдержках, тогда как деформация на 17 % уже значительно подавляет изотермическое мартенситное превращение.

 

 

а–сталь с 1,1 % С и 2,7 % Мn; б–сплав Х17Н9

 

Рисунок 2.7 – Влияние пластической деформации на образование мартенсита при не­прерывном охлаждении (а) и в изотермических условиях (б)

 

Сложное влияние пластической деформации аустенита на мартенситное превращение объясняется, с одной сторо­ны, увеличением числа дефектов кристаллического строения и появлением локальных напряжений, способствующих мартенситному превращению, а с другой стороны, измене­нием структуры аустенита, затрудняющей когерентное об­разование и рост мартенситной фазы.

Мартенситное превращение в значительной степени мо­жет быть подавлено при фазовом наклепе, возникающем при gÛa–переходах в случае циклического нагрева и ох­лаждения.

Структура кристаллов мартенсита зависит от температуры мартен­ситного превращения, т.е. положения точки МН. При низких темпера­турах мартенситного превращения (высокоуглеродистые стали, леги­рованные железоникелевые сплавы с содержанием никеля примерна 30 % и др.) образуется пластинчатый (игольчатый) мартенсит, имею­щий форму пластины или линзы. Пластинчатые кристаллы мартенсита имеют двойникованное строение. В средней части такой линзы есть так называемый мидриб, представляющий собой область параллельных двойниковых прослоек. Однако полностью двойникованное строение пластинчатые кристаллы мартенсита имеют только при очень низких температурах образования (например, сплав 25Н32, Мн = – 150°С). В большинстве случаев кристаллы пластинчатого мартенсита двойникованы лишь частично в мидрибе, а в периферийных зонах не содержат двойников. Плотность дислокации в периферийных зонах мартенситного кристалла относительно невелика (109–1010, см–2), она сравнима с плотностью дислокации после пластической деформации на 15–30 %.


Первичные кристаллы пластинчатого мартенсита растут в пределах исходного аустенитного зерна и, таким образом, длина их определяется размером аустенитных зерен. Вторичные кристаллы мартенсита растут в аустенитном зерне, разделенном первичными кристаллами на более мелкие участки.

В большинстве легированных конструкционных, а также углероди­стых сталей при содержании менее 0,6 % С образуется пакетный мартенсит, иногда называемый реечным или массивным. Пакетный мартенсит состоит из тонких параллельных мартенситных пластин, образующих пакет, имеющий приблизительно одинаковые ли­нейные размеры по всем направлениям.

Плотность дислокации в пластине пакетного мартенсита весьма вы­сока (1011–1012 см –2). Пакетный мартенсит может быть частично двойникован, однако, в меньшей степени, чем пластинчатый (игольчатый) мартенсит. Двойники в пакетном мартенсите образуются при более низких температурах мартенситного превращения, т.е. вблизи точки Мн.

По мнению некоторых ученых, в формировании пластинчатого мар­тенсита определяющую роль играет дополнительная (аккомодирующая) деформация двойникованием, а пластинчатого – скольжением. При по­нижении температура сопротивление скольжению растет в большей степени, чем сопротивление двойникованию, поэтому при низких темпе­ратурах мартенситного превращения формируется двойникованный мар­тенсит, а при более высоких – пакетный. В легированных сплавах по мере понижения мартенситной точки морфология мартенсита меняется от пластинчатого к пакетному.

В сплавах на Fe–Mn–C, Fe–Cr–M––C основах и других ле­гированных сталях с низкой энергией дефектов упаковки могут образовываться кроме аустенита, a– и e – мартенсит и протекать различные фазовые и структурные превращения, что открывает широкие возможности для получения разнообразных по структуре, свойствам и назначению сплавов. Пример микроструктуры пластин­чатого и пакетного мартенсита, а также e–мартенсита приведен на рис. 2.8.

 

 

а – пластинчатый; б – пакетный; в – e–мартенсит, сталь Г20

Рисунок 2.8 – Микроструктура мартенсита

Исключительно перспективными являются в настоящее время двухфазные (e + g) марганцевые сплавы, содержащие 16–25 % Mn. В них наряду с аустенитом присутствует e – мартенсит (решетка ГПУ). При холодной пластической деформации образуется a – мартенсит при одновременном уменьшении количества e – мартенсита (переход e®a). Однако может быть и другая последовательность превращений, а именно, e®g®a. Это обусловлено тем, что e – фаза имеет дефекты упаковки ГЦК, облегчающие ее переход в аустенит при деформации, а из последнего уже образуется a – мартенсит. Еще одной особенностью является то, что e – мартенсит может образовываться в изотермических условиях при температурах ниже Мнg®e. В чистом виде (без предварительного образования e – мартенсита охлаждения) изотермическое образование e – фазы при комнатной и отрицательной температурах наблюдается после многократных g®e – превращениях, в результате которых происходит стабилизация аустенита. Изотермическое g®e – превращение обеспечивает упрочнение сплавов при вылеживании в условиях комнатной температуры и самопроизвольную релаксацию напряжений, что исключает необходимость последующей термообработки для их уменьшения. Сплавы с ГПУ структурой обладают высокой демпфирующей способностью.


Большой практический интерес представляют немагнитные стали типа Г20С2 и Г20К2 на основе e – мартенсита. Легирование V, Nb и N позволяет увеличить количество e – мартенсита до 95 % (сталь Г20К2АФБ15).

Комбинированными обработками двухфазных e + g сплавов, использующих деформационный наклеп аустенита при различных температурах, прямые и обратные мартенситные превращения, протекающие в процессе самой деформации, получен высокий уровень механических свойств: sВ ³ 1200 МПа, s0,2 ³ 1000 МПа, d ³ 10 %.

 







Date: 2016-07-05; view: 326; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.021 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию