Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Классификация и конструкции выпарных аппаратовСтр 1 из 2Следующая ⇒
Основные понятия и способы выпаривания. При кипении растворов нелетучих веществ (например, растворов солей, щелочей, органических веществ с очень низким давлением паров при температуре кипения и т. п.) в пары переходит практически только растворитель. По мере его испарения и удаления в виде паров концентрация раствора повышается. Процесс концентрирования растворов, заключающийся в частичном удалении растворителя путем его испарения при кипении, называется выпариванием. Испарение при температурах ниже температуры кипения данного раствора происходит с его поверхности, в то время как при кипении растворитель испаряется во всем объеме кипящего раствора, что значительно интенсифицирует процесс удаления растворителя из раствора. Обычно из раствора удаляют лишь часть растворителя, так как в применяемых для выпаривания аппаратах вещество должно оставаться в текучем состоянии. В ряде случаев при выпаривании растворов твердых веществ достигается насыщение раствора. При дальнейшем удалении растворителя из такого раствора происходит кристаллизация, т.е. выделение из него твердого вещества. Процесс выпаривания широко применяется для повышения концентрации разбавленных растворов, выделения из них растворенных веществ путем кристаллизации, а иногда - для выделения растворителя (например, при получении питьевой или технической воды в выпарных опреснительных установках).
Таким образом, выпаривание является типичным процессом переноса теплоты от более нагретого теплоносителя - греющего пара - к кипящему раствору. Основные отличия процесса выпаривания, вследствие которых выпаривание в ряду тепловых процессов выделяют в самостоятельный раздел, заключается в особенностях его аппаратурного оформления и методе расчета выпарных установок. В отличие от обычных теплообменников выпарные аппараты состоят из двух основных узлов (рис. 1): греющей камеры, или кипятильника, 2 (как правило, в виде пучка труб) и сепаратора 1, предназначенного для улавливания капель раствора из пара, образующегося при кипении раствора. Для более полного улавливания в сепараторе устанавливают различные по конструкции брызгоуловители. Поверхность кипятильных труб, так же как и при расчетах теплообменников, определяют по уравнению (11.73):
Однако для процесса выпаривания расчет входящих в это уравнение величин существенно усложняется. Например, при определении полезной разности температур Для снижения скорости отложения загрязнений (накипи) на стенках труб в выпарных аппаратах создают условия для интенсивной циркуляции раствора (при этом скорость движения раствора в трубах составляет 1-3 м/с). Естественно, циркуляцию раствора также следует учитывать при расчете выпарных аппаратов. Из схемы одной из конструкций выпарного аппарата с внутренней цикруляционной трубой, представленной на рис. 14-1, видно, что исходный разбавленный раствор поступает в нижнюю часть сепаратора 1 и затем попадает в кипятильные трубы. Первичный пар направляют в межтрубное пространство греющей камеры, где он конденсируется, отдавая теплоту конденсации через стенки кипятильных труб к кипящему раствору. Выпарной аппарат указанного типа работает по принципу направленной естественной циркуляции, которая вызывается различием плотностей кипящего раствора в циркуляционной трубе 3 и в кипятильных трубах греющей камеры 2. Разность плотностей обусловливается различием удельного теплового потока, приходящегося на единицу объема раствора: в кипятильных трубах он выше, чем в циркуляционной трубе. Поэтому интенсивность кипения, а следовательно, и парообразование в них тоже выше; образующаяся здесь парожидкостная смесь имеет меньшую плотность, чем в циркуляционной трубе. Это приводит к направленной циркуляции кипящего раствора, который по циркуляционной трубе опускается вниз, а по кипятильным трубам поднимается вверх. Парожидкостная смесь попадает затем в сепаратор, в котором пар отделяется от раствора, и его выводят из аппарата. Упаренный раствор выходит из штуцера в днище аппарата. Таким образом, в аппаратах с естественной циркуляцией раствора создается организованный циркуляционный контур по схеме: кипятильные (подъемные) трубы -» паровое пространство -» циркуляционная (опускная) труба -» подъемные трубы, и т.д. Выпаривание проводят при атмосферном давлении, под вакуумом или под давлением, большим атмосферного. Отметим, что образующийся при выпаривании растворов пар, называют вторичным, или соковым. Выпаривание под вакуумом имеет ряд преимуществ по сравнению с атмосферной выпаркой: снижается температура кипения раствора, что дает возможность использовать этот способ для выпаривания растворов термически нестойких веществ; повышается полезная разность температур, что ведет к снижению требуемой поверхности теплопередачи выпарного аппарата; несколько снижаются потери теплоты в окружающую среду (так как снижается температура стенки аппарата); появляется возможность использования теплоносителя низкого потенциала. К недостаткам выпаривания под вакуумом относятся удорожание установки (так как требуется дополнительное оборудование-конденсатор, вакуум-насос и др.), а также несколько больший расход греющего пара на 1 кг выпариваемой жидкости (вследствие снижения давления над раствором происходит увеличение теплоты испарения растворителя). При выпаривании под повышенным давлением (выше атмосферного) вторичный пар может быть использован в качестве греющего агента для различных технологических нужд. В случае, если в выпарной установке имеется один выпарной аппарат (см. рис. 14-1), такую установку называют однокорпусной. Если же в установке имеются два или более последовательно соединенных корпусов, то такую установку называют многокорпусной. В этом случае вторичный пар одного корпуса используют для нагревания в других выпарных аппаратах той же установки, что приводит к существенной экономии свежего греющего пара. Вторичный пар, отбираемый из выпарной установки для других нужд, называют экстра-паром. В многокорпусной выпарной установке свежий пар подают только в первый корпус. Из первого корпуса образовавшийся вторичный пар поступает во второй корпус этой же установки в качестве греющего, в свою очередь вторичный пар второго корпуса поступает в третий корпус в качестве греющего, и т.д. При больших производительностях (от нескольких кубических метров выпариваемого раствора в час и выше), что характерно для промышленности, выпаривание проводят по непрерывному принципу. В аппаратах непрерывного действия обычно создают условия для интенсивной циркуляции раствора, т.е. в таких аппаратах гидродинамическая структура потоков близка к модели идеального смешения. Поэтому концентрация раствора в таких аппаратах ближе к конечной, что приводит к ухудшению условий теплопередачи (так, с повышением концентрации раствора увеличивается его вязкость и, следовательно, снижается коэффициент теплоотдачи от стенки к раствору). Периодическое выпаривание проводят при малых производительностях и необходимости упаривания раствора до существенно высоких концентраций.
Классификация и конструкции выпарных аппаратов Наибольшее распространение в химической и смежных отраслях промышленности получили высокопроизводительные выпарные аппараты непрерывного действия, особенно трубчатые выпарные аппараты различных типов. Нагревательные камеры таких аппаратов могут быть непосредственно соосно соединены с сепараторами в единое устройство. Возможно и устройство, состоящее из двух самостоятельных элементов: нагревательной камеры и сепаратора. Выпарные аппараты классифицируются по различным признакам. Наиболее существенной является классификация по принципу организации циркуляции кипящего раствора в аппарате. Различают выпарные аппараты с естественной и принудительной циркуляцией раствора, пленочные и барботажные (с погружными горелками) аппараты. Хорошая циркуляция раствора в аппарате способствует интенсификации теплообмена, в первую очередь со стороны кипящей жидкости. Как известно, увеличение скорости движения жидкости приводит к уменьшению толщины теплового пограничного слоя, снижению его термического сопротивления и повышению коэффициента теплоотдачи. Кроме того, циркуляция раствора предотвращает быстрое отложение на стенках кипятильных труб твердой фазы (накипи). Появляется возможность осуществлять выпаривание кристаллизующихся и высоковязких растворов.
На рис. 2 показан выпарной аппарат с вынесенной циркуляционной трубой 5. В этом аппарате циркуляционная труба не обогревается, следовательно раствор в ней не кипит и парожидко-стная смесь не образуется. Разность плотностей парожидкостной j смеси в кипятильных трубах 2 и раствора в циркуляционной трубе I больше, чем в аппаратах с центральной циркуляционной трубой, ' поэтому кратность циркуляции и коэффициенты теплопередачи I несколько выше. Повышение скорости движения парожидкостной смеси в кипятильных трубах уменьшает возможность отложения I солей, которые могут выделяться при концентрировании растворов. Существенного снижения отложения солей можно достичь при использовании аппаратов с вынесенной зоной кипения (рис. 3). В таких аппаратах вследствие увеличенного гидростатического давления столба жидкости кипения в трубах нагревательной камеры 1не происходит, упариваемый раствор только перегревается. При выходе перегретого раствора из этих труб в трубу вскипания 4 он попадает в зону пониженного гидростатического давления, где и происходит интенсивное его закипание. Таким образом предотвращается возможность отложения накипи на теплообменной поверхности труб и, следовательно, увеличиваются коэффициент теплопередачи и время эксплуатации аппарата между профилактическими ремонтами.
В ряде случаев выпарные аппараты с принудительной циркуляцией выполняют с вынесенной нагревательной камерой (см. рис. 4, а). В этом случае появляется возможность производить замену нагревательной камеры при ее загрязнении, а иногда к одному сепаратору подсоединять две или три нагревательные камеры. Роль зоны вскипания выполняет труба, соединяющая нагревательную камеру и сепаратор. Достоинством выпарного аппарата с соосными греющей камерой и сепаратором (см. рис. 4,6) является меньшая производственная площадь, необходимая для его размещения. К общим недостаткам выпарных аппаратов с принудительной циркуляцией следует отнести повышенный расход энергии, связанный с необходимостью работы циркуляционного насоса. Все рассмотренные выше конструкции аппаратов по структуре движения в них жидкости близки к моделям идеального перемешивания, поэтому при сравнительно большом объеме циркулирующего раствора последний находится при повышенных температурах достаточно длительное время (а отдельные частицы жидкости - бесконечно долго). Это существенно затрудняет выпаривание нетермостойких растворов. Для таких растворов можно использовать пленочные выпарные аппараты. Пленочные выпарные аппараты. Их относят к группе аппаратов, работающих без циркуляции; процесс выпаривания осуществляется за один проход жидкости по кипятильным трубам, причем раствор движется в них в виде восходящей или нисходящей пленки жидкости. Как правило, эти аппараты работают при прямоточном движении раствора и образующегося вторичного пара, который занимает центральную часть труб. В связи с этим здесь отсутствует гидростатический столб парожидкостной смеси и, следовательно, гидростатическая депрессия. Для обеспечения заданных пределов изменения концентраций упариваемых растворов кипятильные трубы делают длинными (6-10 м).
В выпарном аппарате с нисходящей пленкой жидкости (рис. 5,6) исходный раствор подают в верхнюю часть нагревательной камеры 1, где обычно расположен распределитель жидкости, из которого последняя по трубам стекает вниз. Образующийся вторичный пар также движется в нижнюю часть нагревательной камеры, откуда вместе с жидкостью попадает в сепаратор 2 для отделения от раствора. Для снижения температуры кипения раствора процесс, как правило, проводят под вакуумом. В этих аппаратах удается упаривать также растворы, склонные к интенсивному пенообразованию. Вместе с этим пленочным аппаратам свойствен ряд недостатков. Они очень чувствительны к изменениям нагрузок по жидкости, в особенности при малых расходах растворов. Существует определенный минимальный расход раствора, ниже которого не удается достигнуть полного смачивания поверхности теплопередачи. Это может приводить к местным перегревам трубок, выделению твердых осадков, резкому снижению интенсивности теплопередачи. В таких аппаратах не рекомендуется выпаривать кристаллизующиеся раст воры. Для них также требуются большие производственные площади. Всем трубчатым выпарным аппаратам свойствен существенный недостаток: в них затруднительно, а часто и практически невозможно выпаривать агрессивные растворы. Для таких растворов применяют аппараты, в которых отсутствуют теплопередающие поверхности, а процесс теплообмена осуществляют пугем непосредственного соприкосновения теплоносителя (нагретых или топочных газов) с упариваемым раствором.
Интенсивное испарение раствора обеспечивается насыщением газовых пузырьков водяным паром. Большим достоинством барботажных выпарных аппаратов является возможность изготавливать их из обычной углеродистой стали, однако их приходится футеровать самыми разнообразными антикоррозионными материалами: керамикой, графитом, резиной, пластмассами и др.
Date: 2016-07-25; view: 5501; Нарушение авторских прав |