Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Совместной работы с компьютером.





1. дальность видимости как метеорологическая величина1 Метеорологическая

 

Видимость наряду с высотой облаков является тем важнейшим элементом, по которому устанавливается минимум метеоусловий, позволяющих производить взлет и посадку, ориентировку экипажа в полете и выполнение специальных работ авиаций. Если видимость во время полета хорошая, летчик легко ориентируется в воздухе, видит все препятствия, поэтому нет опасности столкновения с ними. Полет при плохой видимости значительно усложняется, так как летчик вынужден пилотировать самолет только по приборам.[2, c.99].

Видимость в атмосфере представляет собой сложное психофизическое явление, обусловленное, главным образом, ослаблением светового потока частицами воздуха, а также жидкими и твердыми частицами, находящимися в атмосфере во взвешенном состоянии.

Ослабление светового потока в атмосфере характеризуется коэффициентом ослабления.

Видимость в атмосфере определяется не только коэффициентом ослабления, но также индивидуальной способностью восприятия и интерпретации, характеристиками источника света.

Международной комиссией по освещению (МКО) и Международной электротехнической комиссией (МЭК) установлены и рекомендованы четыре следующих фотометрических параметра:

а) световой поток (p) - величина, получаемая на основе потока излучения путем оценки этого излучения в соответствии с его воздействием на стандартного фотометрического наблюдателя, который определен Международной светотехнической комиссией (МСК);

б) сила света (интенсивность света) (i)- световой поток, приходящийся на единицу телесного угла;

в) яркость (фотометрическая яркость) (x) - сила света, приходящаяся на единицу площади освещаемой поверхности в заданном направлении

г) освещенность (E) - световой поток, приходящийся на единицу площади;

Понятие «видимость» широко применяется в метеорологии в двух совершенно определенных значениях. Во-первых, это одна из метеовеличин, характеризующая воздушные массы (арктическую, полярную, тропическую) и используемая в синоптической метеорологии и климатологии. В этом случае видимость является показателем оптического состояния атмосферы. Во вторых, это оперативный параметр, соответствующий определенным критериям или специальным применениям. В этом случае видимость выражается в виде расстояния, на котором видны конкретные маркеры или огни.

Мера видимости, используемая в метеорологии, в том числе и при метеорологическом обеспечении авиации, должна быть свободна от влияния не метеорологических условий и связана с субъективными представлениями о видимости и расстоянием, на котором обычные объекты могут наблюдаться и распознаваться.

Существуют следующие характеристики, определяющие дальность видимости:

метеорологическая дальность видимости (МДВ), метеорологическая оптическая дальность (МОД), дальность видимости на взлетной посадочной полосе ВПП.

Термин «дальность видимости на ВПП» во вех документах определяется одинаково: «Дальность видимости на ВПП». Расстояние в пределах которого пилот воздушного судна, находящегося на осевой линии ВПП, может видеть маркировочные знаки на поверхности ВПП или огни, которые ограничивает ВПП или обозначают ее осевую линию»

Дальность видимости объектов может изменяться в широких пределах: от нескольких метров в сильном тумане или в метели до нескольких десятков километров в прозрачном воздухе, пришедшем из Арктики.[3, с. 137].

Метеорологическая дальность видимости (МДВ) - наибольшее расстояние, с которого можно обнаружить днем на фоне неба или дымки черный объект размером более 15 угловых минут, ночью - опознать световые ориентиры, МДВ измеряется в м и км.

Видимость различных объектов зависит от целого ряда факторов, основными из которых являются:

- размеры, форма и цвет наблюдаемого объекта;

- цвет и яркость фона, на котором проецируется объект. Если цвет и яркость фона и объекта совпадают, объект не будет виден. Чем более контрастно различаются их цвета, тем лучше виден объект;

- освещенность предмета и фона. При хорошей освещенности предмет будет виден лучше, чем при плохой;

- выпуклость поверхности Земли и наличие естественных и искусственных препятствий ограничивают видимость предметов, их влияние существенно зависит от высот предмета и полета над поверхностью Земли;

- свойства глаз наблюдателя, их чувствительность к восприятию контраста цветов, острота зрения и др.;

- прозрачность атмосферы - степень ее замутненности, наличие в ней пыли, дыма и мельчайших взвешенных капелек воды (осадков).

Видимость определяется как на земле, так и с самолетов.

Обеспечение полетов современной скоростной авиации особенно на малых высотах и при снижении на посадку, требует определения горизонтальной, наклонной и вертикальной дальностей видимости.

Горизонтальная дальность видимости (ГДВ) - это видимость в горизонтальном направлении. Она может определяться как у поверхности земли, так и на высоте полета.

Наклонная дальность видимости - это видимость земных предметов с высоты полета в наклонной плоскости под некоторым углом к горизонту.

Вертикальная дальность видимости - это видимость в вертикальном направлении. Она зависит в основном от тех же факторов, что и ГДВ, но, кроме того, и от наличия облачности и слоев с ухудшенной видимостью под инверсиями.

Различные явления погоды (туман, осадки, пыльные бури, метели и др.) ухудшают горизонтальную, наклонную и вертикальную дальности видимости не в одинаковой степени. Так, сквозь тонкие облака и тонкий слои тумана сверху (в вертикальном направлении) могут хорошо просматриваться земные ориентиры. В то же время наклонная, а тем более горизонтальная дальность видимости в этом случае будет невелика. В прозрачном воздухе ГДВ будет меньше наклонной, так как на последнюю меньше влияют выпуклость земной поверхности и высота искусственных и естественных препятствий.

При наблюдении за мелкими объектами с малой высоты полета вертикальная видимость будет больше наклонной из-за малых угловых размеров объектов. Так, при высоте полета 8 - 10 км угловые размеры таких объектов, как железные и шоссейные дороги, здания, мосты, реки и небольшие населенные пункты, настолько малы, что их можно различить при ясной погоде, только пролетая над ними. Если же эти объекты оказываются в стороне от траектории полета, то они не видны. Такая ограниченная видимость объектов (ориентиров) затрудняет ориентировку при полете на малой высоте даже в ясную погоду.

Для решения ряда практических задач по метеорологическому обеспечению полетов ГДВ на аэродроме определяется инструментально или визуально по выбранным ориентирам (огням).

Известно, что результаты визуальных методов определения МДВ зависят от субъективных данных каждого наблюдателя и являются в связи с этим неточными, особенно ночью, когда нет достаточного количества ориентиров.

1.2 Принципы и методы измерения

 

В современных средствах измерения (приборах) видимости атмосферы производится непосредственное измерение коэффициента пропускания () в слое атмосферы, соответствующем измерительной базе (l) или показателю ослабления

Измерение коэффициента пропускания () производится при использовании базисного метода (метод фотометрирования). При этом применяются два варианта реализации базисного принципа измерения (трансмиссометры, фотометры):

- двухконечный, когда передатчик (излучатель световых сигналов) устанавливается на одном конце базы, а приемник - на другом (рис.1.1.);

 

- одноконечный, когда передатчик и приемник находятся на одном конце базы, а отражатель светового потока, выходящего из передатчика, на другом конце базы (рис.1.2.)

Для измерения МОД (MOR) применяются оба варианта. Имеются приборы для измерения МОД (MOR), использующие оба варианта, на пример фотометр ФИ-2. Для измерения (определения) показателя ослаблен используются следующие типы приборов:

- приборы бокового рассеяния,

- приборы прямого рассеяния,

- приборы обратного рассеяния.

Прибор бокового рассеяния зондирует объем воздуха, освещенный источником света, рассеянный от объема или внутри луча (рис. 1.4.).

 

 

Прибор прямого рассеяния представляет собой излучатель света (передатчик) и приемник, направленный оптической осью обычно под углом 30-400 друг к другу

Прибор обратного рассеяния аналогичен по принципу действия прибору прямого рассеяния. Отличие заключается в том, что приемник зондирует свет, рассеянный в обратную сторону

Фотометр импульсный ФИ-1.Назначение - непрерывные дистанционные измерения метеорологической дальности видимости и регистрация прозрачности атмосферы в любых метеорологических условиях


 


 

 

10. Основные принципы устройства цифровых измерительных приборов.

 

Цифровыми измерительными приборами (ЦИП) называют такие, которые в соответствии со значением измеряемой величины образуют код, а затем в соответствии с кодами измеряемую величину представляют на отсчетном устройстве в цифровой форме. Код может подаваться в цифровое регистрирующее устройство, вычислительную машину или другие автоматические устройства, что обусловило широкое практическое применение этих приборов в технике. Например, такие электронные аналоговые приборы, как частотомеры и фазометры, вытесняются цифровыми приборами, которые обладают относительной простотой преобразования этих параметров в кодовый сигнал.

ЦИП обладает рядом преимуществ: объективность и удобством отсчета результата измерения; возможностью измерений с высокой точностью при полной автоматизации процесса измерения; высокой быстротой действия и чувствительностью; возможностью дистанционной передачи результатов в виде кода без потерь точности; сочетанием ЦИП с вычислительными и различными автоматическими устройствами.

К недостаткам ЦИП относятся сложность, (следовательно, малая надежность, и высокая стоимость), Развитие микроэлектроники устраняют эти недостатки.

Особенно плодотворные результаты дает использование микропроцессоров, которые позволяют осуществлять, например, такие функции, как автоматическая коррекция систематических погрешностей, диагностика неисправно­стей, обработка полученных данных, управление отдельны­ми узлами ЦИП и т.д.

Принцип работы ЦИП основан на дискретном представлении непрерывных величин.

ЦИП состоит из двух обязательных узлов; аналого-цифрового преобразователя (АЦП) и цифрового отсчетного устройства (ОУ). АЦП выдает код в соответствии со значением измеряемой величины. ОУ отражает это значение в цифровой форме. АЦП применяются также в измерительных, информационных управляющих и других системах и выпус­каются промышленностью в качестве самостоятельных средств измерения. Обычно они имеют на выходе двоичный код и могут быть значительно быстрее действовать по срав­нению с АЦП, применяемыми в ЦИП. Быстродействие же ЦИП ограничивается инерционностью зрительного восприя­тия. Многие ЦИП содержат предварительные аналоговые преобразователи (АП). Их используют для изменения масштаба входной величины Х или ее преобразования в другую величину y=f(x), более удобную для выбранного метода кодирования.

Метрологические и другие технические характеристики ЦИП определяются методом преобразования в код. В ЦИП, предназначенных для измерения электрических величин, применяются метод последовательного счета и метод поразрядного уравновешивания. Соответственно, различают ЦИП последовательного счета и ЦИП поразрядного уравновеши­вания (кодоимпульсные). В зависимости от того, какое зна­чение величины измеряется, ЦИП делятся на приборы для измерения мгновенного значения и приборы для измерения среднего значения за определенный промежуток времени (интегрирующие). По роду измеряемой величины ЦИП подразделяются на вольтметры, омметры, частотомеры, фазометры, мультиметры (комбинированные), в которых предусматривается возможность измерения нескольких электрических величин и ряда параметров электрических цепей.

По области применения выделяются ЦИП лабораторные, системные и щитовые.

ЦИП устроены сложно, их функциональные части выполняются на основе элементов электронной техники, в основном это интегральные микросхемы. В современных ЦИП функциональные узлы, преобразующие аналоговые сигналы, обычно выполняются на основе микроэлектронных операционных усилителей.

Триггеры состоят из устройства с двумя состояниями устойчивого равновесия, способными скачкообразно переходить из одного состояния в другое с помощью внешнего сиг­нала. После такого перехода новое устойчивое состояние сохраняется до тех пор, пока другой внешний сигнал не из­менит его.

Пересчетные устройства (ПУ) применяются для выполнения различных задач, например, для деления частоты импульсов, для преобразования число-импульсного кода в двоичный и т.д.

Если ПУ снабдить ОУ для отображения номера состояния схемы, то можно вести счет поступающих на вход ПУ импульсов, т.е. в этом случае можно получить счетчик импульсов.

Знаковые индикаторы применяются для получения показаний в цифровой форме в виде специальных газоразряд­ных ламп или сегментных знаковых индикаторов (в качестве светящихся элементов используют жидкие кристаллы, светодиоды, полоски электролюминафора и т.п.),

Ключи - это устройства, выполняющие функции выключателей и переключателей. В основном применяются электронные ключи на диодах, транзисторах, и др. элементах электронных схем.

Логические элементы реализуют логические функции. Входными и выходными величинами этих элементов являются переменные, принимающие только два значения -1 и 0. Рассмотрим основные логические элементы, дающие возможность путем их соединения реализовать любую логическую функцию.

Логический элемент ИЛИ - функция сложения, имеет несколько входов и один выход, который принимает значение 1, если хотя бы одна входная величина равна 1 и принимает значение 0, если все входы равны 0;

Логический элемент НЕ - функция отрицания (если вход имеет значение равное 0, то на выходе получим 1 и наоборот) служит для инвертирования;

Логическая функция И - функция умножения, имеет несколько входов и один выход, который принимает значение 1, если все входы равны 1 и принимает значение 0, если хотя бы один вход равен 0. Элемент И носит название схемы совпадения и может применяться как логический ключ, один из входных сигналов которого служит управляющим.

Логические элементы выполняют как на дискретных устройствах (диодах, транзисторах, резисторах), так и в виде интегральных микросхем.

Дешифраторы - это устройства, для преобразования кодов одного вида в другие.

Сравнивающие устройства (СУ) - предназначены для сравнения известной (X1) и неизвестной (Х2) величин и формирования выходного сигнала(у, у1, у2) в зависимости от результатов сравнения. Выходной сигнал реальных СУ изменяет свое значение не в момент равенства неизвестных (х1=х2), а практически при некоторой разности (xср=x1-x2), называемой порогом чувствительности, или порогом срабатывания СУ. Входное сопротивление и быстродействие СУ обычно определяют входное сопротивление и быстродействие ЦИП. Реализуются СУ с применением элементов электроники.

Цифро-аналоговые преобразователи (ЦАП) предназначены для преобразования кода в квантованную величину (напряжения, сопротивление и т.д.).

Хронометры - приборы для измерения интервала времени. Упрощенная структурная схема прибора приведена на рис. 3.13

Частотомеры. Принцип действия прибора (рис. 3.14) основан на подсчете импульсов частотой fx за интервал вре­мени tин.

Вольтметры. Характеристики цифровых вольтметров (ЦВ) зависят от метода преобразования (изменения), реализации по схеме параметров элементной базы, конструкции, технологии изготовления и других факторов. Эти факторы являются зависимыми величинами и в совокупности и вза­имосвязи определяют свойства конкретных приборов. В основу принципа работы поло

 

жен компенсационный метод измерения, при котором неизвестное напряжение сравни­вается с известным - компенсирующим. Момент равенства этих напряжений выявляется сравнивающей схемой, а циф­ровое отсчетное

Date: 2016-07-25; view: 259; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию