Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Свободные и вынужденные





Свободные - это колебания в системе под действием внутренних сил после того, как система выведена из состояния равновесия (в реальных условиях свободные колебания всегда затухающие). Простейшими примерами свободных колебаний являются колебания груза, прикреплённого к пружине, или груза, подвешенного на нити.

Вынужденные - колебания, протекающие в системе под влиянием внешнего периодического воздействия. Примеры: листья на деревьях, поднятие и опускание руки. При вынужденных колебаниях может возникнуть явление резонанса: резкое возрастание амплитуды колебаний при совпадениисобственной частоты осциллятора и частоты внешнего воздействия.

1.2 уравнение механических гармонических колебания -Важным типом колебаний являются гармонические колебания — колебания, происходящие по закону синуса или косинуса. Как установил в 1822 году Фурье, любое периодическое колебание может быть представлено как сумма гармонических колебаний путём разложения соответствующей функции в ряд Фурье. Среди слагаемых этой суммы существует гармоническое колебание с наименьшей частотой, которая называется основной частотой, а само это колебание — первой гармоникой или основным тоном, частоты же всех остальных слагаемых, гармонических колебаний, кратны основной частоте, и эти колебания называются высшими гармониками или обертонами — первым, вторым и т.д.[1]

 

1.2 характеристики (амплитуда, фаза, период, частота, циклическая частота)

Фаза определяет состояние системы, а именно координату, скорость, ускорение, энергию и др.

Циклическая частота характеризует скорость изменения фазы колебаний.

Амплитуда колебаний A - это наибольшее смещение из положения равновесия

Период T - это промежуток времени, в течение которого точка выполняет одно полное колебание.

Частота колебаний - это число полных колебаний в единицу времени t.

2. Электромагнитные колебания

2.1 свободные и вынужденные –

Свободные - Свободными колебаниями называются колебания, которые возникают в системе (конденсатор и катушка) после выведения ее из положения равновесия (при сообщении конденсатору заряда). Точнее, свободные электромагнитные колебания возникают при разрядке конденсатора через катушку индуктивности.

Вынужденные - Вынужденными колебаниями называются колебания в цепи под действием внешней периодически изменяющейся электродвижущей силы.

Простейшей системой, в которой наблюдаются свободные электромагнитные колебания, является колебательный контур. Он состоит из катушки индуктивности и конденсатора.Этот процесс будет повторяться снова и снова. Возникнут электромагнитные колебания из-за превращения энергии электрического поля конденсатора.

 

2.2 колебательный контур - электрическая цепь, содержащая катушку индуктивности, конденсатор и источник электрической энергии. При последовательном соединении элементов цепи колебательный контур называется последовательным, при параллельном − параллельным.[1]

Колебательный контур — простейшая система, в которой могут происходить свободные электромагнитные колебания.

2.3 превращение энергии в колебательный контур - Пусть конденсатор ёмкостью C заряжен до напряжения U0. Энергия, запасённая в конденсаторе составляет

Ec=CU0^2/2
При соединении конденсатора с катушкой индуктивности, в цепи потечёт ток I, что вызовет в катушке электродвижущую силу (ЭДС) самоиндукции, направленную на уменьшение тока в цепи. Ток, вызванный этой ЭДС (при отсутствии потерь в индуктивности) в начальный момент будет равен току разряда конденсатора, то есть результирующий ток будет равен нулю. Магнитная энергия катушки в этот (начальный) момент равна нулю.

Затем результирующий ток в цепи будет возрастать, а энергия из конденсатора будет переходить в катушку до полного разряда конденсатора. В этот момент электрическая энергия конденсатора EC = 0. Магнитная же энергия, сосредоточенная в катушке, напротив, максимальна и равна

El=LI^2/2

После этого начнётся перезарядка конденсатора, то есть заряд конденсатора напряжением другой полярности. Перезарядка будет проходить до тех пор, пока магнитная энергия катушки не перейдёт в электрическую энергию конденсатора. Конденсатор, в этом случае, снова будет заряжен до напряжения − U0.

В результате в цепи возникают колебания, длительность которых будет обратно пропорциональна потерям энергии в контуре.

 

Блок 3 – «Волны»

1.Механические волны - изменение некоторой совокупности физических величин (характеристик некоторого физического поля или материальной среды), которое способно перемещаться, удаляясь от места их возникновения, или колебаться внутри ограниченных областей пространства[1].

Волновой процесс может иметь самую разную физическую природу: механическую, химическую (реакция Белоусова — Жаботинского, протекающая вавтоколебательном режиме каталитического окисления различных восстановителей бромисто-водородной кислотой HBrO3), электромагнитную(электромагнитное излучение), гравитационную (гравитационные волны), спиновую (магнон), плотности вероятности (ток вероятности) и т. д. Как правило, распространение волны сопровождается переносом энергии, но не переносом массы.

Многообразие волновых процессов приводит к тому, что никаких абсолютных общих свойств волн выделить не удаётся[1]. Одним из часто встречающихся признаков волн считается близкодействие, проявляющееся во взаимосвязи возмущений в соседних точках среды или поля, однако в общем случае[ уточнить ]может отсутствовать и оно[1].

Среди всего многообразия волн выделяют некоторые их простейшие типы, которые возникают во многих физических ситуациях из-за математическогосходства описывающих их физических законов[1]. Об этих законах говорят в таком случае как о волновых уравнениях. Для непрерывных систем это обычнодифференциальные уравнения в частных производных в фазовом пространстве системы, для сред часто сводимые к уравнениям, связывающим возмущения в соседних точках через пространственные и временные производные этих возмущений[1]. Важным частным случаем волн являются линейные волны, для которых справедлив принцип суперпозиции.

1.1 продольные и поперечные

Поперечная - волна, в которой частицы среды перемещаются перпендикулярно направлению распространения волны.

Продольная - волна, в которой движение частиц среды происходит вдоль направления распространения волны.

1.2 характеристики волн (длина волны, скорость)

— Скорость волны — это скорость распространения колебаний в пространстве. Обозначается быстрота буквой и измеряется в метрах, разделенных на секунду.

— Длина волны — расстояние между ближайшими друг к другу точками волны, которые колеблются в одинаковой фазе. Длина волны обозначается буквой λ и измеряется в метрах.

1.3 звуковые волны - Звуковые сигналы классифицируют по высоте, тембру и громкости. Высота звука определяется частотой источника звуковых колебаний. Чем больше частота колебаний, тем выше звук; колебаниям малых частот соответствуют низкие звуки. Тембр звука определяется формой звуковых колебаний. Различие формы колебаний, имеющих одинаковый период, связано с разными относительными амплитудами основной моды и обертоном. Громкость звука характеризуется уровнем интенсивности звука. Интенсивность звука — энергия звуковых волн, падающая на площадь 1 м2 за 1 с.

2.Электромагнитые волны - распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля.

Среди электромагнитных полей вообще, порождённых электрическими зарядами и их движением, принято относить собственно к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников — движущихся зарядов, затухая наиболее медленно с расстоянием.

2.1 свойства электромагнитных волн - войства электромагнитных волн можно определить исходя из теории Максвелла. Звучит она так, переменное электрическое поле является источником магнитного поля в окружающей среде. Порождаемое поле имеет вихревой характер. То есть силовые линии его замкнуты и имеют форму окружностей.

Первым свойством электромагнитной волны является то, что она поперечна. Это значит, что векторы напряжённости электрического поля и вектор магнитной индукции колеблются в перпендикулярных плоскостях. А направление распространения волны перпендикулярно плоскости образованной векторами E и B.

Date: 2016-07-25; view: 556; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию