Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Адресная доставка лекарств в пораженные клетки
Чтобы лекарство было эффективным важно, чтобы его молекулы попали к нужным клеткам: антидепрессанты попали в мозг, противовоспалительные средства – в места воспалений, антираковые препараты – в опухоль и т. д. Способность молекул вещества попадать в теле пациента туда, где они необходимы, называется биологической усвояемостью.[4] Биологическая усвояемость – камень преткновения всей современной фармацевтики. Поэтому сегодня учеными всего мира ведутся активные работы по адресной доставке лекарств, которые будут точно попадать в цель, не повреждая других органов. Для этого пытаются создать некое “транспортное средство” для точной доставки лекарств в клетку, так как многие болезни (не только рак) зависят от нарушения внутриклеточных механизмов, повлиять на которые можно только доставив лекарство в клетку. Поиск молекулярного транспорта начался в восьмидесятые годы, когда исследователи стали активно заниматься генной инженерией. В частности, группе российских ученых удалось разработать специальную макромолекулу_транспортер, способную доставить лекарство в дефектную клетку. Опыты, которые показали, что эффективность лекарственного вещества, которое доставляется макромолекулой_транспортером в ядро, при различных типах рака может возрастать в 250_1000 раз, а это значит, что во столько же раз можно снизить дозу препарата, чтобы вызвать нужный эффект.[20] Конструкция транспортера состоит из четырех функциональных модулей: лиганда, эндосомолитического модуля, сигнала внутриядерной локализации и собственно носителя лекарства. На первом этапе работает лиганд – модуль, обеспечивающий обнаружение больной клетки (например, раковой), ее “молекулярное узнавание”.
Он же отвечает и за поглощение всей конструкции клеткой. Второй модуль – эндосомолитический – разрывает эндосому, “пузырь”, образующийся вокруг транспортера при его втягивании внутрь клетки. Далее в игру вступает третий модуль, который позволяет транспортеру проникнуть через поры ядерной мембраны. И наконец, четвертый модуль, несущий лекарство, позволяет ему приступить к выполнению основной задачи – уничтожению ядра. Один из используемых лигандов был взят из человеческого гормона, обладающего высоким сродством к рецепторам соответствующей клетки_мишени, эндосомолитический модуль – из дифтерийного токсина, модуль внутриядерной доставки – из белка обезьяньего вируса, носитель лекарства – из части гемоглобиноподобного белка кишечной палочки. Далее с помощью генно_инженерных методов была создана единая работоспособная конструкция. Меняя программу модулей, мы можем получить макромолекулы_транспортеры для лечения любого типа рака. К примеру, если для лечения какого_то заболевания нужно доставить лекарство не в ядро, а в другую органеллу клетки, то будет заменена программа модуля внутриклеточной локализации. Или меняется программа носителя в зависимости от лекарственного средства, которое необходимо доставить.[13] Транспортер будет представлять собой пузырек с жидкостью, которую нужно смешивать с соответствующим лекарством перед употреблением. Во-первых, при использовании наноразмерных переносчиков объем распределения препарата обычно снижается. Во-вторых, происходит снижение токсичности препарата за счет его избирательного накопления в поврежденной ткани и меньшего поступления в здоровые ткани. В-третьих, многие нанопереносчики увеличивают растворимость гидрофобных веществ в водной среде и, таким образом, делают возможным их парентеральное введение. В-четвертых, системы доставки способствуют повышению стабильности препаратов на основе пептидов, олигонуклеотидов и небольших гидрофобных молекул. И, наконец, в-пятых, нанопереносчики представляют собой биосовместимые материалы.[16] Одним из примеров использования наноструктур для направленной доставки лекарственных препаратов являются нанооболочки. В отличие от углеродных наночастиц, нанооболочки представляют собой несколько более крупные частицы, состоящие из кремнеземной сердцевины и тонкого золотого покрытия. Нанооболочки покрываются слоем полимера, содержащего лекарственный препарат, и вводятся в организм. После накопления частиц в пораженной ткани (например, в опухоли) производится облучение данной области инфракрасным лазером. Это приводит к селективному поглощению нанооболочками инфракрасных частот и их нагреванию. Нагрев поверхности частицы приводит к высвобождению лекарства из слоя полимера и обеспечивает его локальное действие.[13]
Заключение В настоящее время не вызывает сомнений утверждение, что будущее фармацевтической отрасли в большой степени будет определяться биотехнологиями. В отличие от традиционных лекарственных средств, полученных методами химического синтеза, в фармацевтических биотехнологиях используются методики, позволяющие создавать соединения, составляющие основу лекарственных препаратов (прежде всего, белки), зачастую идентичные естественным. Главным преимуществом лекарственных препаратов, полученных биотехнологическим путём, является их высокая специфичность по отношению к факторам, связанным с возникновением и развитием болезни. Этот подход позволил создать ряд препаратов для лечения таких недугов, как онкологические, сердечно-сосудистые, нейродегенеративные заболевания. В процессе получения лекарственных веществ перспективно использование метода генной инженерии. С помощью нее создаются новые лекарственные препараты (лекарственные препараты на основе генно-инженерных моноклональных антител), усовершенствуются уже имеющиеся, и внедряются новые виды вакцин, созданные с помощью ДНК-технологий.
Date: 2016-07-25; view: 458; Нарушение авторских прав |