Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Variations in Earth's orbit





Main article: Milankovitch cycles

The tilt of the Earth’s axis and the shape of its orbit around the Sun vary slowly over tens of thousands of years and are a natural source of climate change, by changing the seasonal and latitudinal distribution of solar insolation.

During the last few thousand years, this phenomenon contributed to a slow cooling trend at high latitudes of the Northern Hemisphere during summer, a trend that was reversed by greenhouse-gas-induced warming during the 20th century.[118][119][120][121]

Variations in orbital cycles may initiate a new glacial period in the future, though the timing of this depends on greenhouse gas concentrations as well as the orbital forcing. A new glacial period is not expected within the next 50,000 years if atmospheric CO2 concentration remains above 300 ppm.

Feedback

Main articles: Climate change feedback and Climate sensitivity

Sea ice, shown here in Nunavut, in northern Canada, reflects more sunshine, while open ocean absorbs more, accelerating melting.

The climate system includes a range of feedbacks, which alter the response of the system to changes in external forcings. Positive feedbacks increase the response of the climate system to an initial forcing, while negative feedbacks reduce it.[124]

There are a range of feedbacks in the climate system, including water vapor, changes in ice-albedo (snow and ice cover affect how much the Earth's surface absorbs or reflects incoming sunlight), clouds, and changes in the Earth's carbon cycle (e.g., the release of carbon from soil). The main negative feedback is the energy the Earth's surface radiates into space as infrared radiation. According to the Stefan-Boltzmann law, if theabsolute temperature (as measured in kelvin) doubles, radiated energy increases by a factor of 16 (2 to the 4th power).

Feedbacks are an important factor in determining the sensitivity of the climate system to increased atmospheric greenhouse gas concentrations. Other factors being equal, a higher climate sensitivity means that more warming will occur for a given increase in greenhouse gas forcing. Uncertainty over the effect of feedbacks is a major reason why different climate models project different magnitudes of warming for a given forcing scenario. More research is needed to understand the role of clouds[124] and carbon cycle feedbacks in climate projections.

The IPCC projections previously mentioned span the "likely" range (greater than 66% probability, based on expert judgement)[8] for the selected emissions scenarios. However, the IPCC's projections do not reflect the full range of uncertainty.[130] The lower end of the "likely" range appears to be better constrained than the upper end.

Climate models

Main article: Global climate model

Calculations of global warming prepared in or before 2001 from a range of climate models under theSRES A2 emissions scenario, which assumes no action is taken to reduce emissions and regionally divided economic development.

Projected change in annual mean surface air temperature from the late 20th century to the middle 21st century, based on a medium emissions scenario(SRES A1B). This scenario assumes that no future policies are adopted to limit greenhouse gas emissions. Image credit: NOAAGFDL.

A climate model is a representation of the physical, chemical and biological processes that affect the climate system.[133] Such models are based on scientific disciplines such as fluid dynamics and thermodynamics as well as physical processes such as radiative transfer. The models may be used to predict a range of variables such as local air movement, temperature, clouds, and other atmospheric properties; ocean temperature, salt content, and circulation; ice cover on land and sea; the transfer of heat and moisture from soil and vegetation to the atmosphere; and chemical and biological processes, among others.

Although researchers attempt to include as many processes as possible, simplifications of the actual climate system are inevitable because of the constraints of available computer power and limitations in knowledge of the climate system. Results from models can also vary due to different greenhouse gas inputs and the model's climate sensitivity. For example, the uncertainty in IPCC's 2007 projections is caused by (1) the use of multiple models with differing sensitivity to greenhouse gas concentrations, (2) the use of differing estimates of humanity's future greenhouse gas emissions, (3) any additional emissions from climate feedbacks that were not included in the models IPCC used to prepare its report, i.e., greenhouse gas releases from permafrost.

The models do not assume the climate will warm due to increasing levels of greenhouse gases. Instead the models predict how greenhouse gases will interact with radiative transfer and other physical processes. Warming or cooling is thus a result, not an assumption, of the models.

Clouds and their effects are especially difficult to predict. Improving the models' representation of clouds is therefore an important topic in current research. Another prominent research topic is expanding and improving representations of the carbon cycle.

Models are also used to help investigate the causes of recent climate change by comparing the observed changes to those that the models project from various natural and human causes. Although these models do not unambiguously attribute the warming that occurred from approximately 1910 to 1945 to either natural variation or human effects, they do indicate that the warming since 1970 is dominated by anthropogenic greenhouse gas emissions.

The physical realism of models is tested by examining their ability to simulate contemporary or past climates. Climate models produce a good match to observations of global temperature changes over the last century, but do not simulate all aspects of climate. Not all effects of global warming are accurately predicted by the climate models used by the IPCC. Observed Arctic shrinkage has been faster than that predicted. Precipitation increased proportionally to atmospheric humidity, and hence significantly faster than global climate models predict.[144][145] Since 1990, sea level has also risen considerably faster than models predicted it would.

Date: 2016-07-05; view: 242; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию