Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Формы адекватности информации





Адекватность информации может выражаться в трех формах: семантической, синтаксической, прагматической.

Синтаксическая адекватность. Она отображает формально-структурные характеристики информации и не затрагивает ее смыслового содержания. На синтаксическом уровне учитываются тип носителя и способ представления информации, скорость передачи и обработки, размеры кодов её представления, надежность и точность преобразования этих кодов и т. п. Информацию, рассматриваемую только с синтаксических позиций, обычно называют данными, т.к. при этом не имеет значения смысловая сторона.

Семантическая (смысловая) адекватность. Эта форма определяет степень соответствия образа объекта и самого объекта. Семантический аспект предполагает учет смыслового содержания информации. На этом уровне анализируются те сведения, которые отражает информация, рассматриваются смысловые связи. В информатике устанавливаются смысловые связи между кодами представления информации. Эта форма служит для формирования понятий и представлений, выявления смысла, содержания информации и ее обобщения.

Прагматическая (потребительская) адекватность отражает отношение информации и ее потребителя, соответствие информации цели управления, которая на ее основе реализуется. Прагматические свойства информации проявляются только при наличии единства информации (объекта), пользователя и цели управления. Прагматический аспект рассмотрения связан с ценностью, полезностью использования информации при выработке потребителем решения для достижения своей цели.

 

Меры информации

Классификация мер

Для измерения информации вводятся два параметра: количество информации I и объем данных V. Эти параметры имеют разные выражения и интерпретацию в зависимости от рассматриваемой формы адекватности. Каждой форме адекватности соответствует своя мера количества информации и объема данных (рис. 2.1).

Объем данных Vд в сообщении измеряется количеством символов (разрядов) в этом сообщении. В различных системах счисления один разряд имеет различный вес и соответственно меняется единица измерения данных:

* в двоичной системе счисления единица измерения - бит (bit - binary digit - двоичный разряд);

* в десятичной системе счисления единица измерения - дит (десятичный разряд).

Количество информации I на синтаксическом уровне невозможно определить без рассмотрения понятия неопределенности состояния системы (энтропии системы). Действительно, получение информации о какой-либо системе всегда связано с изменением степени неосведомленности получателя о состоянии этой системы. Рассмотрим это понятие.

Пусть до получения информации потребитель имеет некоторые предварительные (априорные) сведения о системе a. Мерой его неосведомленности о системе является функция H(a), которая в то же время служит и мерой неопределенности состояния системы.

После получения некоторого сообщения b получатель приобрел некоторую дополнительную информацию Ib(a), уменьшившую его априорную неосведомленность так, что апостериорная (после получения сообщения b) неопределенность состояния системы стала Hb(a).

Тогда количество информации Ib(a) о системе, полученной в сообщении b, определится как

Ib(a) = H(a)-Hb(a),

т.е. количество информации измеряется изменением (уменьшением) неопределенности состояния системы.

Если конечная неопределенность системы Hb(a) обратится в нуль, то первоначальное неполное знание заменится полным знанием и количество информации Ib(a) = H(a). Иными словами, энтропия системы H(a) может рассматриваться как мера недостающей информации.

Энтропия системы H(a), имеющая N возможных состояний, согласно формуле Шеннона, равна

H(a) = - ,

где Pi - вероятность того, что система находится в i-м состоянии.

Для случая, когда все состояния системы равновероятны, т.е. их вероятности равны Pi = , ее энтропия определяется соотношением

H(a) = - .

Часто информация кодируется числовыми кодами в той или иной системе счисления, особенно это актуально при представлении информации в компьютере. Естественно, что одно и то же количество разрядов в разных системах счисления может передать разное число состояний отображаемого объекта, что можно представить в виде соотношения

N = mn,

где N - число всевозможных отображаемых состояний;

m - основание системы счисления (разнообразие символов, применяемых в алфавите);

n - число разрядов (символов) в сообщении.

Наиболее часто используются двоичные и десятичные логарифмы. Единицами измерения в этих случаях будут соответственно бит и дит.

Коэффициент (степень) информативности (лаконичность) сообщения определяется отношением количества информации к объему данных, т.е.

Y=1/Vд, причем 0<Y<1.

С увеличением Y уменьшаются объемы работы по преобразованию информации (данных в системе). Поэтому стремятся к повышению информативности, для чего разрабатываются специальные методы оптимального кодирования информации.

 







Date: 2016-07-22; view: 470; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию