Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Истечение через малое отверстие в тонкой стенке
Рисунок 3.28 – Истечение из большого резервуара через малое отверстие Рассмотрим большой резервуар с жидкостью, из которого через малое отверстие в боковой стенке вытекает струйка (рисунок 3.28). Термины «большой резервуар» и «малое отверстие» означает, что эти размеры не сказываются на изменении высоты жидкости (напора) в резервуаре при вытекании из него жидкости. Термин «тонкая стенка» означает, что после сжатия струя вытекающей жидкости не касается цилиндрической поверхности отверстия. Рассмотрим два сечения в этом резервуаре, обозначенные индексами 0 и С. Запишем уравнение Бернулли для этих условий
Для описанных условий можно считать, что движения жидкости в сечении 0 нет, следовательно, скоростной напор равен нулю. Разницей нивелирных высот, из-за их малого влияния можно пренебречь. Коэффициентом
После перегруппировки членов получим
Выразим отсюда скорость
Заменим скорость отношением расхода к площади живого сечения потока и вновь перегруппируем
Проанализируем полученное выражение. Заметим, что индекс «с» относится к струе, и это единственный индекс, относящийся к движущейся жидкости «на выходе» рассматриваемого проходного сечения. Величина Отсюда становится понятным физический смысл коэффициента скорости. Он выражает отношение действительного расхода через проходное сечение к теоретическому расходу. Действительным расходом называют расход, который на самом деле проходит через проходное сечение. Теоретический расход это такой, который мог бы протекать через проходное сечение при отсутствии потерь. Учитывая, что
где Тогда окончательно будем иметь формулу
где С помощью полученного выражения решается задача определения расхода для всех случаев течения жидкости под действием разности давлений. Кроме того, из данного выражения видно, что причиной течения жидкости является разность давлений. Жидкость всегда движется из области высокого давления область низкого давления. По существу приведённое выражение можно считать инженерной формой уравнения Бернулли. При прохождении жидкости через малое отверстие происходит «смятие» струи. На немецком языке «мятие» - «drosseln». Поэтому в технике истечение через малое отверстие называют дросселированием. Гидравлический аппарат, предназначенный для дросселирования, называется дросселем, а отверстие в этом гидроаппарате называется проходным сечением. Наиболее сложной задачей практического применения этого уравнения является определение коэффициента На графике буквами Reт обозначает число Рейнольдса, посчитанное по теоретической скорости, соответствующей теоретическому расходу. С увеличением скорости истечения и связанным с этим увеличением Reт коэффициент скорости φ быстро нарастает и при Reт → ∞ стремится к значению φ =1,0. Это свидетельствует о значительном уменьшении гидравлического сопротивления отверстия за счёт снижения влияния вязкости.
Рисунок 3.29 – Зависимость ε, μ и φ от число Рейнольдса Коэффициент сжатия струи ε с увеличением Reт уменьшается и при Reт → ∞ стремится к значению ε = 0,6. Коэффициент расхода μ, являясь произведением коэффициентов φ и ε, на первом этапе растёт, достигая максимального значения μ = 0,69 при Reт ≈ 350, а затем плавно снижается до μ ≈ 0,6. Таким образом, только за счёт коэффициента μ величина расхода уменьшается на 30 – 40 % относительно теоретически возможного.
Date: 2016-07-18; view: 456; Нарушение авторских прав |