Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Лекция 3 Схема Бернулли





( Тема 2.2.)

План лекции

Формула полной вероятности.

Формула Байеса.

Повторение испытаний.

Формула Бернулли.

Локальная и интегральная формулы Муавра-Лапласа в схеме Бернулли.

Определение Пусть событие А может произойти только совместно с одним из событий Н1, Н2,…, Нп, образующих полную группу несовместных событий. Тогда события Н1, Н2,…, Нп называются гипотезами.

Теорема Вероятность события А, наступающего совместно с гипотезами Н 1, Н 2,…, Нп, равна: где p (Hi) – вероятность i- й гипотезы, а p (A/Hi) – вероятность события А при условии реализации этой гипотезы. Данная формула носит название формулы полной вероятности.

Пример. Имеются три одинаковые урны с шарами. В первой из них 3 белых и 4 черных шара, во второй – 2 белых и 5 черных, в третьей – 10 черных шаров. Из случайно выбранной урны наудачу вынут шар. Найти вероятность того, что он белый.

Решение. Будем считать гипотезами Н 1, Н 2 и Н 3 выбор урны с соответствующим номером. Так как по условию задачи все гипотезы равновозможны, то Найдем условную вероятность А при реализации каждой гипотезы:

Тогда







Date: 2016-07-18; view: 270; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию