Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Способы описания цвета





Основы работы с цветом

Основные понятие теории цвета в графике

Понятие цвета

Ø Цвет в компьютерной графике – средство усиления зрительного впечатления и повышения информационной насыщенности изображения.

Ø Ощущение цвета формируется человеческим мозгом в результате анализа светового потока, попадающего на сетчатку глаза от излучающих или отражающих объектов.

Считается, что цветовые рецепторы (колбочки) подразделяются на три группы, каждая из которых воспринимает только единственный цвет – красный, зеленый или синий. Нарушения в работе любой из групп приводит к явлению дальтонизма – искаженного восприятия цвета.

Ø Световой поток формируется излучениями, представляющими собой комбинацию трех “чистых” спектральных цветов (красный, зеленый, синий – КЗС) и их производных (в англоязычной литературе используют аббревиатуру RGB – Red, Green, Blue).

Ø Для излучающих объектов характерно аддитивное цветовоспроизведение (световые излучения суммируются), для отражающих объектов – субтрактивное цветовоспроизведение (световые излучения вычитаются). Примером объекта первого типа является электронно-лучевая трубка монитора, второго типа – полиграфический отпечаток.

Ø Параметры физических характеристик светового потока: мощность, яркость и освещенность.

Ø Визуальные параметры ощущения цвета характеризуются светлотой, то есть различимостью участков, сильнее или слабее отражающих свет.

Ø Минимальную разницу между яркостью различимых по светлоте объектов называют порогом.

Ø Величина порога пропорциональна логарифму отношения яркостей.

Ø Важнейшим инструментом для анализа и обработки изображения является градация – последовательность оптических характеристик объекта (расположенная по возрастанию или убыванию).

Ø Градация выражена в оптических плотностях или логарифмах яркостей.

Ø Для точного цветовоспроизведения изображения на экране монитора важным является понятие цветовой температуры.

В классической физике считается, что любое тело с температурой, отличной от 0 градусов по шкале Кельвина, испускает излучение. С повышением температуры спектр излучения смещается от инфракрасного до ультрафиолетового диапазона, проходя через оптический.

Для идеального черного тела легко находится зависимость между длиной волны излучения и температурой тела. На основе этого закона, например, была дистанционно вычислена температура Солнца – около 6500 К. Для целей правильного цветовоспроизведения характерна обратная задача. То есть, монитор с выставленной цветовой температурой 6500 К, должен максимально точно воспроизвести спектр излучения идеального черного тела, нагретого до такой же степени. Таким образом, стандартные значения цветовых температур используют в качестве всеобщего эталона, обеспечивающего одинаковое цветовоспроизведение на разных излучающих устройствах.

На практике зрение человека непрерывно подстраивается под спектр, характерный для цветовой температуры источника излучения. Например, на улице в яркий солнечный день цветовая температура составляет около 7000 К. Если с улицы зайти в помещение, освещенное только лампами накаливания (цветовая температура около 2800 К), то в первый момент свет ламп покажется желтым, белый лист бумаги тоже приобретет желтый оттенок. Затем происходит адаптация зрения к новому соотношению КЗС, характерному для цветовой температуры 2800 К, свет лампы и лист бумаги будут восприниматься как белые.

Ø Насыщенность цвета показывает, насколько данный цвет отличается от монохроматического (“чистого”) излучения того же цветового тона. В компьютерной графике за единицу принимается насыщенность цветов спектральных излучений.

Ø Ахроматические цвета (белый, серый, черный) характеризуется только светлотой. Хроматические цвета имеют параметры насыщенности, светлоты и цветового тона.

Способы описания цвета

Ø В компьютерной графике при работе с цветом применяют понятие цветового разрешения (другое название – глубина цвета). Оно определяет метод кодирования цветовой информации для ее воспроизведения на экране монитора.

Для отображения черно-белого изображения достаточно двух бит (белый и черный цвета). Восьмиразрядное кодирование позволяет отобразить 256 градаций цветового тона. Два байта (16 бит) определяют 65 536 оттенков (режим называют High Color). При 24-разрядном способе кодирования возможно определить более 16,5 миллионов цветов (режим называют True Color).

Некоторые устройства, к которым можно отнести и человеческие глаза, способны воспринимать цвета. Другие устройства способны воспроизводить цвета. Однако делают они это по-разному. Человеческий глаз не способен воспринять цвета ультрафиолетового и инфракрасного диапазона, однако то, что он воспринимает, все равно гораздо больше, чем может передать экран монитора, офсетная печать или фотоснимок (см. рис.).

Ø Цветовой охват – это диапазон цветов, которые могут быть воспроизведены, зафиксированы или описаны каким-либо образом.

Цвета в природе редко являются простыми. Большинство цветовых оттенков образуется смешением основных цветов.

Ø Способ разделения цветового оттенка на составляющие компоненты называется цветовой моделью.

Цветовые модели разработаны в соответствии с принципами формирования изображения аддитивным или субтрактивным методами. Существует много различных типов цветовых моделей, но в компьютерной графике, как правило, применяется не более трех. В основном применяют модели RGB и HSB (для создания и обработки аддитивных изображений) и CMYK (для печати копии изображения на полиграфическом оборудовании).

Ø Цветовые модели расположены в трехмерной системе координат, образующей цветовое пространство, так как из законов Грассмана следует, что цвет можно выразить точкой в трехмерном пространстве.

Первый закон Грассмана (закон трехмерности).

Ø Любой цвет однозначно выражается тремя составляющими, если они линейно независимы. Линейная независимость заключается в невозможности получить любой из этих трех цветов сложением двух остальных.

Второй закон Грассмана (закон непрерывности).

Ø При непрерывном изменении излучения цвет смеси также меняется непрерывно. Не существует такого цвета, к которому нельзя было бы подобрать бесконечно близкий.

Третий закон Грассмана (закон аддитивности).

Ø Четыре цвета всегда линейно зависимы.

То есть цвет (С) смеси выражается суммой цветовых уравнений излучений:

C1 = R1R + G1G + B1B;

C2 = R2R + G2G + B2B;

Cn = RnR + GnG + BnB;

Cсумм = (R1 + R2 +…+ Rn) R + (G1 + G2 +…+ Gn) G + (B1 + B2 +…+ Bn) B.

Ø Таким образом, прямоугольная трехмерная координатная система цветового пространства для аддитивного способа формирования изображения имеет точку начала координат, соответствующую абсолютно черному цвету (цветовое излучение отсутствует), и три оси координат, соответствующих основным цветам. Направление вектора характеризует цветность, а его модуль выражает яркость.

Ø Так как величина излучения основных цветов является основой цветовой модели, ее максимальное значение принято считать за единицу.

Ø В трехмерном цветовом пространстве можно построить плоскость единичных цветов, образованную треугольником цветности.

Каждой точке плоскости единичных цветов соответствует след цветового вектора, пронизывающего ее в этой точке. Следовательно, цветность любого излучения может быть представлена единственной точкой внутри треугольника цветности, в вершинах которого находятся точки основных цветов. То есть

Ø Положение точки любого цвета можно задать двумя координатами, а третья легко находится по двум другим.

Если на плоскости единичных цветов указать значения координат, соответствующих реальным спектральным излучениям оптического диапазона (от 380 до 700 нм), и соединить их кривой, то мы получим линию, являющуюся геометрическим местом точек цветности монохроматических излучений, называемую локусом. Внутри локуса находятся все реальные цвета.

Ø Локус – это геометрическое место точек цветности монохроматических излучений.

Чтобы избежать отрицательных значений координат, была выбрана колориметрическая система XYZ, полученная путем пересчета из RGB. В этой системе точке белого соответствуют координаты (0,33; 0,33). Колориметрическая система XYZ является универсальной, в ней можно выразить цветовой охват как аддитивных, так и субтрактивных источников цвета.

Ø Для аддитивных источников цветовой охват выражается треугольником с координатами вершин, соответствующими излучению основных цветов R, G, В.

Ø Для субтрактивных источников (полученных в процессе печати красками, чернилами, красителями) используется модель CMYK, поэтому цветовой охват описывается шестиугольником, когда помимо точек синтеза основной триады (желтая, пурпурная, голубая) добавляются точки попарных наложений, соответствующие основным цветам: желтая + голубая = зеленая, желтая + пурпурная = красная, голубая + пурпурная = синяя.

Цветовые модели

Date: 2016-07-18; view: 836; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию