Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Краткая история эволюции вычислительных систем
Мы будем рассматривать историю развития именно вычислительных, а не операционных систем, потому что hardware и программное обеспечение эволюционировали совместно, оказывая взаимное влияние друг на друга. Появление новых технических возможностей приводило к прорыву в области создания удобных, эффективных и безопасных программ, а новые идеи в программной области стимулировали поиски новых технических решений. Именно эти критерии удобство, эффективность и безопасность играли роль факторов естественного отбора при эволюции вычислительных систем. Первый период (1945-1955). Ламповые машины. Операционные систем отсутствовали. Мы начнем исследование развития компьютерных комплексов с появления электронных вычислительных систем (опуская историю механических и электромеханических устройств). Первые шаги по созданию электронных вычислительных машин были предприняты в конце второй мировой войны. В середине 40-х были созданы первые ламповые вычислительные устройства, и появился принцип программы, хранимой в памяти машины (John Von Neumann, июнь 1945г). В то время одна и та же группа людей участвовала и в проектировании, и в эксплуатации, и в программировании вычислительной машины. Это была скорее научно-исследовательская работа в области вычислительной техники, а не регулярное использование компьютеров в качестве инструмента решения каких-либо практических задач из других прикладных областей. Программирование осуществлялось исключительно на машинном языке. Об операционных системах не было и речи, все задачи организации вычислительного процесса решались вручную каждым программистом с пульта управления. За пультом мог находиться только один пользователь. Программа загружалась в память машины в лучшем случае с колоды перфокарт, а обычно с помощью панели переключателей. Вычислительная система выполняла одновременно только одну операцию (ввод-вывод, собственно вычисления, размышления программиста). Отладка программ велась с пульта управления с помощью изучения состояния памяти и регистров машины. В конце этого периода появляется первое системное программное обеспечение: в 1951-52 гг. возникают прообразы первых компиляторов с символических языков (Fortran и др.), а в 1954 г. Nat Rochester разрабатывает ассемблер для IBM-701. В целом первый период характеризуется крайне высокой стоимостью вычислительных систем, их малым количеством и низкой эффективностью использования. Второй период (1955-Начало 60-х). Компьютеры на основе транзисторов. Пакетные операционные системы С середины 50-х годов начался новый период в эволюции вычислительной техники, связанный с появлением новой технической базы - полупроводниковых элементов. Применение транзисторов вместо часто перегоравших электронных ламп привело к повышению надежности компьютеров. Теперь они смогли непрерывно работать настолько долго, чтобы на них можно было возложить выполнение действительно практически важных задач. Снизилось потребление вычислительными машинами электроэнергии. Проще стали системы охлаждения. Размеры компьютеров уменьшились. Эксплуатация и обслуживание вычислительной техники подешевели. Началось использование ЭВМ коммерческими фирмами. Одновременно наблюдается бурное развитие алгоритмических языков (ALGOL-58, LISP, COBOL, ALGOL-60, PL-1 и т.д.). Появляются первые настоящие компиляторы, редакторы связей, библиотеки математических и служебных подпрограмм. Упрощается процесс программирования. Пропадает необходимости взваливать на одних и тех же людей весь процесс разработки и использования компьютеров. Именно в этот период происходит разделение персонала на программистов и операторов, специалистов по эксплуатации и разработчиков вычислительных машин. Изменяется сам процесс прогона программ. Теперь пользователь приносит программу с входными данными в виде колоды перфокарт и указывает требуемые для нее ресурсы. Такая колода получает название задания. Оператор загружает задание в память машины и запускает его на исполнение. Полученные выходные данные печатаются на принтере, и пользователь получает их обратно через некоторое (довольно большое) время. Смена запрошенных ресурсов вызывает приостановку выполнения программ. В результате процессор часто простаивает. Для повышения эффективности использования компьютера задания с похожими требуемыми ресурсами начинают собирать вместе, создавая пакет заданий. Появляются первые системы пакетной обработки, которые просто автоматизируют запуск одной программы из пакета за другой и, тем самым, увеличивают коэффициент загрузки процессора. При реализации систем пакетной обработки был разработан формализованный язык управления заданиями, с помощью которого программист сообщал системе и оператору, какую работу он хочет выполнить на вычислительной машине. Системы пакетной обработки явились прообразом современных операционных систем, они стали первыми системными программами, предназначенными для управления вычислительным процессом. Третий период (Начало 60-х - 1980). Компьютеры на основе интегральных микросхем. Первые многозадачные ОС. Следующий важный период развития вычислительных машин относится к началу 60-х - 1980 годам. В это время в технической базе произошел переход от отдельных полупроводниковых элементов типа транзисторов к интегральным микросхемам. Вычислительная техника становится более надежной и дешевой. Растет сложность и количество задач, решаемых компьютерами. Повышается производительность процессоров. Повышению эффективности использования процессорного времени мешает низкая скорость механических устройств ввода-вывода (быстрый считыватель перфокарт мог обработать 1200 перфокарт в минуту, принтеры печатали до 600 строк в минуту). Вместо непосредственного чтения пакета заданий с перфокарт в память начинают использовать его предварительную запись сначала на магнитную ленту, а затем и на диск. Когда в процессе выполнения заданию требуется ввод данных, они читаются с диска. Точно так же выходная информация сначала копируется в системный буфер и записывается на ленту или диск, а реально печатается только после завершения задания. Вначале действительные операции ввода-вывода осуществлялись в режиме off-line, то есть с использованием других, более простых, отдельно стоящих компьютеров. В дальнейшем они начинают выполняться на том же компьютере, который производит вычисления, то есть в режиме on-line. Такой прием получает название spooling (сокращение от Simultaneous Peripheral Operation On Line) или подкачки-откачки данных. Введение техники подкачки-откачки в пакетные системы позволило совместить реальные операции ввода-вывода одного задания с выполнением другого задания, но потребовало появления аппарата прерываний для извещения процессора об окончании этих операций. Магнитные ленты были устройствами последовательного доступа, то есть информация считывалась с них в том порядке, в каком была записана. Появление магнитного диска, для которого не важен порядок чтения информации, то есть устройства прямого доступа, привело к дальнейшему развитию вычислительных систем. При обработке пакета заданий на магнитной ленте очередность запуска заданий определялась порядком их ввода. При обработке пакета заданий на магнитном диске появляется возможность выбора очередного выполняемого задания. Пакетные системы начинают заниматься планированием заданий: в зависимости от наличия запрошенных ресурсов, срочности вычислений и т.д. на счет выбирается то или иное задание. Дальнейшее повышение эффективности использования процессора было достигнуто с помощью мультипрограммирования. Идея мультипрограммирования заключается в следующем: пока одна программа выполняет операцию ввода-вывода, процессор не простаивает, как это происходило при однопрограммном режиме, а выполняет другую программу. Когда операция ввода-вывода заканчивается, процессор возвращается к выполнению первой программы. Эта идея напоминает поведение преподавателя и студентов на экзамене. Пока один студент (программа) обдумывает ответ на поставленный вопрос (операция ввода-вывода), преподаватель (процессор) выслушивает ответ другого студента (вычисления). Естественно, что такая ситуация требует наличия в комнате нескольких студентов. Точно также мультипрограммирование требует наличия в памяти нескольких программ одновременно. При этом каждая программа загружается в свой участок оперативной памяти, называемый разделом, и не должна влиять на выполнение другой программы. (Студенты сидят за отдельными столами и не подсказывают друг другу.) Появление мультипрограммирования требует целой революции в строении вычислительной системы. Большую роль, здесь играет аппаратная поддержка, наиболее существенные особенности которой:
Не менее важна в организации мультипрограммирования роль операционной системы. Наиболее существенные изменения состояли в следующем:
Мультипрограммные пакетные системы дают окружение, в котором различные системные ресурсы (например, процессор, память, периферийные устройства) используются эффективно. И все же пользователь не мог непосредственно взаимодействовать с заданием и должен был предусмотреть с помощью управляющих карт все возможные ситуации. Отладка программ по-прежнему занимала много времени и требовала изучения многостраничных распечаток содержимого памяти и регистров или использования отладочной печати. Появление электроннолучевых дисплеев и переосмысление возможностей применения клавиатур поставили на очередь решение этой проблемы. Логическим расширением систем мультипрограммирования стали time-sharing системы или системы разделения времени **. В них процессор переключается между задачами не только на время операций ввода-вывода, но и просто по прошествии определенного интервала времени. Эти переключения происходят столь часто, что пользователи могут взаимодействовать со своими программами во время их выполнения, то есть интерактивно. В результате появляется возможность одновременной работы многих пользователей на одной компьютерной системе. У каждого пользователя для этого должна быть хотя бы одна программа в памяти. Чтобы уменьшить ограничения на количество работающих пользователей, была внедрена идея неполного нахождения исполняемой программы в оперативной памяти. Основная часть программы находится на диске и необходимый для ее дальнейшего выполнения кусок может быть легко загружен в оперативную память, а ненужный выкачан обратно на диск. Это реализуется с помощью механизма виртуальной памяти. Основным достоинством такого механизма является создание иллюзии неограниченной оперативной памяти ЭВМ. В системах разделения времени пользователь получил возможность легко и эффективно вести отладку своей программы в интерактивном режиме, записывать информацию на диск, не используя перфокарты, а непосредственно с клавиатуры. Появление on-line файлов привело к необходимости разработки развитых файловых систем. Параллельно внутренней эволюции вычислительных систем в этот период наблюдается и внешняя их эволюция. До начала этого периода вычислительные комплексы были, как правило, несовместимы. Каждый имела свою собственную специальную операционную систему, свою систему команд и т.д. В результате программу, успешно работающую на одном типе машин, необходимо было полностью переписать и заново отладить для другого типа компьютеров. В начале третьего периода появилась идея создания семейств программно-совместимых машин, работающих под управлением одной и той же операционной системы. Первым семейством программно-совместимых машин, построенных на интегральных микросхемах, явилась серия машин IBM/360. Построенное в начале 60-х годов это семейство значительно превосходило машины второго поколения по критерию цена/производительность. За ней последовала линия компьютеров PDP, несовместимых с линией IBM, кульминацией которой стала PDP-11. Сила одной семьи была одновременно и ее слабостью. Широкие возможности этой концепции (наличие всех моделей: от миникомпьютеров до гигантских машин; обилие разнообразной периферии; различное окружение; различные пользователи) порождали сложную и огромную операционную систему. Миллионы строчек ассемблера, написанные тысячами программистов, содержали множество ошибок, что вызывало непрерывный поток публикаций о них и попыток их исправления. Только в операционной системе OS/360 содержалось более 1000 известных ошибок. Тем не менее, идея стандартизации операционных систем была широко внедрена в сознание пользователей и в дальнейшем получила активное развитие. Четвертый период (1980-настоящее время). Персональные компьютеры. Классические, сетевые и распределенные системы. Следующий период в эволюции вычислительных систем связан с появлением больших интегральных схем (БИС). В эти годы произошло резкое возрастание степени интеграции и удешевление микросхем. Компьютер, не отличающийся по архитектуре от PDP-11, по цене и простоте эксплуатации стал доступен отдельному человеку, а не отделу предприятия или университета. Наступила эра персональных компьютеров. Первоначально персональные компьютеры предназначались для использования одним пользователем в однопрограммном режиме, что повлекло за собой деградацию архитектуры этих ЭВМ и их операционных систем (в частности, пропала необходимость защиты файлов и памяти, планирования заданий и т.п.). Компьютеры стали широко использоваться неспециалистами, что потребовало разработки "дружественного" программного обеспечения, это положило конец кастовости программистов. Однако рост сложности и разнообразия задач, решаемых на персональных компьютерах, необходимость повышения надежности их работы привели к возрождению практически всех черт, характерных для архитектуры больших вычислительных систем. В середине 80-х стали бурно развиваться сети компьютеров, в том числе персональных, работающих под управлением сетевых или распределенных операционных систем. В сетевых операционных системах пользователи, при необходимости воспользоваться ресурсами другого сетевого компьютера, должны знать о его наличии и уметь это сделать. Каждая машина в сети работает под управлением своей локальной операционной системы, отличающейся от операционной системы автономного компьютера наличием дополнительных средств (программной поддержкой для сетевых интерфейсных устройств и доступа к удаленным ресурсам), но эти дополнения существенно не меняют структуру операционной системы. Распределенная система, напротив, внешне выглядит как обычная автономная система. Пользователь не знает и не должен знать, где его файлы хранятся на локальной или удаленной машине, и где его программы выполняются. Он может вообще не знать, подключен ли его компьютер к сети. Внутреннее строение распределенной операционной системы имеет существенные отличия от автономных систем. В дальнейшем автономные операционные системы мы будем называть классическими операционными системами. Что мы вынесли из истории развития вычислительных систем? Просмотрев этапы развития вычислительных систем, мы можем выделить пять основных функций, которые выполняли классические операционные системы в процессе своей эволюции: 1. Планирование заданий и использования процессора. 2. Обеспечение программ средствами коммуникации и синхронизации. 3. Управление памятью. 4. Управление файловой системой. 5. Управление вводом-выводом. 6. Обеспечение безопасности Каждая из приведенных функций обычно реализована в виде подсистемы, являющейся структурным компонентом ОС. В каждой конкретной операционной системе эти функции, конечно, реализовывались по-своему, в различном объеме. Они не были придуманы как составные части деятельности операционных систем изначально, а появились в процессе развития, по мере того, как вычислительные системы становились удобнее, эффективнее и безопаснее. Эволюция вычислительных систем, созданных человеком пошла по такому пути, но никто еще не доказал, что это единственно возможный путь их развития. Операционные системы существуют потому, что на настоящий момент их существование - это разумный способ использования вычислительных систем. Рассмотрение общих принципов и алгоритмов реализации их функций и будет составлять содержание большей части нашего курса. Основные понятия, концепции ОС. В процессе эволюции возникло несколько важных концепций, которые стали неотъемлемой частью теории и практики ОС. Рассматриваемые в данном разделе понятия будут встречаться и разъясняться на протяжении всего настоящего курса. Здесь дается их краткое описание. Системные вызовы В любой операционной системе поддерживается некоторый механизм, который позволяет пользовательским программам обращаться за услугами ядра ОС. В операционных системах наиболее известной советской вычислительной машины БЭСМ-6 соответствующие средства общения с ядром назывались экстракодами, в операционных системах IBM они назывались системными макрокомандами и т.д. В ОС UNIX такие средства называются системными вызовами. Системные вызовы (system calls) интерфейс между операционной системой и пользовательской программой. Они создают, удаляют и используют различные объекты, главные из которых процессы и файлы. Пользовательская программа запрашивает сервис у операционной системы, осуществляя системный вызов. Имеются библиотеки процедур, которые загружают машинные регистры определенными параметрами и осуществляют прерывание процессора, после чего управление передается обработчику данного вызова, входящему в ядро операционной системы. Цель таких библиотек сделать системный вызов похожим на обычный вызов подпрограммы. Основное отличие состоит в том, что при системном вызове задача переходит в привилегированный режим или режим ядра (kernel mode). Поэтому системные вызовы иногда еще называют программными прерываниями в отличие от аппаратных прерываний, которые чаще называют просто прерываниями. В этом режиме работает код ядра операционной системы, причем он исполняется в адресном пространстве и в контексте вызвавшей его задачи. Таким образом, ядро операционной системы имеет полный доступ к памяти пользовательской программы, и при системном вызове достаточно передать адреса одной или нескольких областей памяти с параметрами вызова и адреса одной или нескольких областей памяти для результатов вызова. В большинстве операционных систем системный вызов осуществляется командой программного прерывания (INT). Таким образом, программное прерывание это синхронное событие. Прерывания Прерывание (hardware interrupt) событие, генерируемое внешним (по отношению к процессору) устройством. Посредством аппаратных прерываний аппаратура либо информирует центральный процессор о том, что возникло какое‑либо событие, требующее немедленной реакции (например, пользователь нажал клавишу), либо сообщает о завершении асинхронной операции ввода‑вывода (например, закончено чтение данных с диска в основную память). Важный тип аппаратных прерываний прерывания таймера, которые генерируются периодически через фиксированный промежуток времени. Прерывания таймера используются операционной системой при планировании процессов. Каждый тип аппаратных прерываний имеет собственный номер, однозначно определяющий источник прерывания. Аппаратное прерывание это асинхронное событие, то есть оно возникает вне зависимости от того, какой код исполняется процессором в данный момент. Обработка аппаратного прерывания не должна учитывать, какой процесс является текущим. Исключительные ситуации Исключительная ситуация (exception) событие, возникающее в результате попытки выполнения программой недопустимой команды, доступа к ресурсу при отсутствии достаточных привилегий или обращения к отсутствующей странице памяти. Исключительные ситуации так же, как и системные вызовы, являются синхронными событиями, возникающими в контексте текущей задачи. Исключительные ситуации можно разделить на исправимые и неисправимые. К исправимым относятся такие исключительные ситуации, как отсутствие нужной информации в оперативной памяти. После устранения причины исправимой исключительной ситуации программа может продолжить выполнение. Возникновение в процессе работы операционной системы исправимых исключительных ситуаций является нормальным явлением. Неисправимые исключительные ситуации обычно возникают в результате ошибок в программах. Обычно операционная система реагирует на такие ситуации завершением программы, вызвавшей исключительную ситуацию. Файлы Файлы предназначены для хранения информации на внешних носителях, то есть, принято, что информация, лежащая, например, на диске, должна находиться внутри файла. Обычно под файлом понимают часть пространства на носителе информации, имеющую имя. Главная задача файловой системы (file system) скрыть особенности ввода-вывода и дать программисту простую абстрактную модель файлов, независимых от устройств. Для чтения, создания, удаления, записи, открытия и закрытия файлов также имеется обширная категория системных вызовов (create, delete, open, close, read, write).. Пользователям хорошо знакомы такие понятия, связанные с организацией файловой системы, как каталог, текущий каталог, корневой каталог, путь, для манипулирования которыми в операционной системе имеются системные вызовы. Файловая система ОС описана в главах 11-12. Процессы, нити Концепция процесса в ОС одна из наиболее фундаментальных. Процессы подробно рассмотрены в главах 2-7. Там же описаны нити или легковесные процессы. Date: 2016-07-05; view: 402; Нарушение авторских прав |