Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Австрийский физик. отказаться от назревшего решения
Родился в Зальцбурге в семье камен- эмигрировать в Америку, отчаявшись Щика. Окончил Политехнический добиться признания в академических Институт в Вене, оставался в нем на кругах на родине. Закончил свою Младших преподавательских долж- карьеру в должности профессора Ностях до 1835 года, когда получил Венского королевского имперского Предложение возглавить кафедру университета. Эффект Зеемана Энергетические уровни и спектральные линии излучения атомов в магнитном поле расщепляются
Открытие Кирхгофа—бунзена Спектроскопия 1896 • ЭФФЕКТ ЗЕЕМАНА Атом бора Долгая традиция изучения влияния магнитного поля на свет, испускаемый атомами, восходит к Майклу Фарадею. Сегодня неизбежность существования эффектов подобного влияния кажется нам очевидной, поскольку мы знаем, что электроны и другие атомы обладают спином, то есть ведут себя подобно микроскопическим электрически заряженным волчкам, образующим вокруг себя магнитное поле, и, по сути, представляют собой микроскопические магниты (см. опыт Штерна—герлаха). В конце XIX столетия, когда Питер Зееман решил провести серию опытов и проверить, обладают ли атомы магнитными свойствами, все было, однако, далеко не столь очевидно. Ученый поместил крошечный образец натрия между полюсами регулируемого магнита и стал изучать влияние магнитного поля на спектральные линии излучения атомов натрия (см. спектроскопия). Выяснилось, что при усилении магнитного поля спектральные линии в каждой группе частот размываются, то есть в них появляются новые частоты излучения. Так было впервые однозначно подтверждено существование эффекта, который впоследствии будет назван эффектом Зеемана. Чтобы понять его природу, проще всего обратиться к модели атома бора и задуматься о том, как именно испускается свет. Электрон совершает квантовый скачок с высшей орбиты на низшую (или, что то же самое, с высшего энергетического уровня на низший), испуская при этом фотон строго определенной частоты, соответствующей разности энергий между двумя энергетическими уровнями. Теперь, если предположить, что электрон в действительности представляет собой микроскопический магнит, а сам атом помещен во внешнее магнитное поле, энергия электрона будет зависеть от полярности его магнитного спина — если магнитное поле электрона на орбите однонаправлено внешнему магнитному полю, он обладает одной энергией, если же оно ориентировано в противоположном направлении, то другой. То есть электроны с противоположным магнитным спином, находящиеся на одной орбитали, будут обладать несколько различающимися энергиями и каждый энергетический уровень окажется расщеплен на два близких подуровня. соответственно, там, где раньше имелась единственная возможная энергия квантового перехода между двумя уровнями, теперь имеется четыре возможные энергии перехода. На спектре излучения это должно отразиться таким образом, что вместо одной четко выделенной спектральной линии (частоты излучения) в мощном магнитном поле появятся четыре близко расположенные равноудаленные спектральные линии (частоты). В первоначальном опыте Зееману не удалось различить эти четыре спектральные линии, поскольку несовершенство спектроскопа и недостаточная мощность магнита приводили к тому, что вместо расщепления наблюдалось простое размытие спектральных линий. Однако позже ученому удалось усовершенствовать аппаратуру и выявить четыре отдельных спектральных линии на месте одной размытой, как это и предсказывала теория. Для этого
потребовалось усилить магнитное поле, и Зееману даже удалось доказать, что расстояние между расщепленными линиями спектра напрямую зависит от напряженности магнитного поля. Эффект Зеемана впоследствии нашел очень полезное применение в астрономии, поскольку по расщеплению линий в спектре излучения небесных тел можно судить о напряженности их магнитных полей. Например, именно по эффекту Зеемана астрофизикам удалось установить, что пятна на солнце являются следствием возмущения мощных магнитных полей вблизи его поверхности — солнечных магнитных бурь.
ПИТЕР ЗЕЕМАН (Pieter Zeeman, 1865-1943) — нидерландский физик. Родился в 3oHHew^pe (Zonnemaire) в семье священника и всю жизнь провел на родине за исключением периода обучения в Лейденском университете. Завершив в Лейдене под научным руководством Хендрика Лоренца (Hendrick Lorenz, 1853-1928) работу по выявлению теоретически предсказанного Лоренцем расщепления спектров атомов в магнитном поле, в 1900 году занял кресло Профессора физики Амстердамского университета и занимал его до выхода на пенсию. Прославился как искуснейший экспериментатор и конструктор измерительных приборов, обеспечивавших революционную по тем временам точность измерений. В 1902 году разделил с Лоренцем Нобелевскую премию по физике. В 1918 году дал экспериментальное подтверждение принципа эквива -лентности гравитационной и инер-циальной масс. Эффект Комптона
При рассеянии на свободных электронах фотоны теряют энергию, причем количество потерянной энергии зависит от угла рассеяния ЭФФЕКТ КОМПТОНА В первые десятилетия ХХ века ученые постепенно приходили к осознанию того, что объекты микромира обладают одновременно свойствами и частиц, и волн (см. принцип дополнительности). Начало этому процессу положило предложенное Альбертом Эйнштейном объяснение фотоэлектрического эффекта, согласно которому любое электромагнитное излучение, включая свет, представляет собой пучки фотонов. Открытый же американским физиком Артуром Комптоном эффект рассеяния фотонов на свободных электронах стал еще одним подтверждением квантовой природы фотона. Эксперимент, проделанный Комптоном, описать несложно. Пучок электромагнитных лучей (Комптон использовал рентгеновские лучи) направляется на кристалл, после чего измеряются энергии и угол отклонения рассеянных лучей. В рамках классической теории взаимодействия лучей с веществом (до постулирования принципов квантовой механики) энергия отраженного излучения не должна отличаться от энергии исходного излучения. Комптон же получил принципиально иную картину: энергия рассеянной волны отличалась от энергии исходной волны, и эта разница зависела от угла рассеяния, достигая максимума при угле 90°. Единственным способом дать разумную интерпретацию полученным Комптоном результатам было рассматривать взаимодействие лучей с атомами как столкновение исходящей частицы (фотона) с электроном. Как и два бильярдных шара, эти две частицы, взаимодействуя, отскакивают друг от друга. А поскольку электрон движется медленно, он в общем случае должен приобретать энергию при этом столкновении, в то время как фотон эту же энергию теряет. После публикации Комптоном в начале 1923 года полученных результатов среди физиков осталось мало сомневающихся в реальности фотонов. Сегодня эффект Комптона находит применение в астрофизике: гамма-лучи от космических объектов подвергаются многократному рассеянию, пока их энергия не падает до длин волн рентгеновской части спектра, после чего их можно анализировать на стандартных рентгенографических установках. Подобный детектор был в 1991 году выведен НАСА на орбиту в составе Гамма-лучевой обсерватории имени Комптона.
АРТУР ХОЛЛИ КОМПТОН (Arthur Holly Compton, 1892-1962) — американский физик. Родился в Вустере, штат Огайо (Wooster, Ohio), в семье профессора философии. В 1916 году окончил Принстонский университет. В первые годы после окончания университета работал в частной промышленной лаборатории, где участвовал в создании первых ламп дневного света. Вернувшись к академическим исследованиям, большую часть времени проработал в Чикагском университете, где в 1923 году стал профессором физики. За открытие и объяснение эффекта Комптона он был удостоен Нобелевской премии по физике за 1927 год. Во время Второй мировой войны Комптон руководил металлургической лабораторией при Чикагском университете, участвовавшей в работе по созданию «уранового котла» в рамках Манхэттенского проекта. После окончания Второй мировой войны Комптон много своего времени стал уделять общественно-политической деятельности. В частности, с 1946 по 1948 год состоял членом Комиссии по высшему образованию при президенте США. Эффект Кориолиса Во вращающейся системе отсчета (например, на поверхности Земли) наблюдателю кажется, что тела движутся по изогнутой траектории. Иногда этот эффект объясняют действием некой фиктивной силы — силы Кориолиса
Date: 2016-11-17; view: 375; Нарушение авторских прав |