Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Перспективы электростатических генераторов





 

О статическом электричестве известно со времен первых проблесков цивилизации, но в течение многих веков оно оставалось лишь интересным и таинственным феноменом. В сущности, ничего не было сделано для разработки и практического применения этого действующего начала. Первым определенным стимулом в этом направлении стали открытия Франклина и Лейдена во второй половине XVIII века.

В 1777 году Кавалло изобрел цилиндрическую электростатическую фрикционную машину, и с этого времени началась медленная, но неуклонная эволюция электростатических и индукционных машин, пока не были созданы современные «Уимсхерст», «Хольц», «Топлер» и другие типы машин. Среди них наиболее эффективной была, вероятно, машина, изобретенная Воммельсдорфом 30 лет тому назад. Она вырабатывала ток силой шесть десятых миллиампера и могла бы и при нынешнем уровне развития науки с успехом применяться для зарядки больших надземных электрических емкостей и для повышения ее предельного напряжения от 150 000 до многих миллионов вольт.

Предпринимались также многочисленные попытки генерировать статическое электричество путем трения жидких и твердых частиц, но со времени получения первых экспериментальных данных и по настоящий момент самым простым и наиболее удобным средством для этой цели оказалась конвейерная лента. Статическое электричество, получаемое таким способом, привлекло к себе внимание, когда накопились свидетельства того, что оно способно создавать серьезные проблемы при эксплуатации и вызывать аварии на бумажных фабриках, мукомольных заводах и подобных предприятиях.

В начале девяностых годов мои безэлектродные вакуумные лампы стали крайне популярны и часто светили от конвейерных лент, а позже рентгеновские трубки работали в том же режиме. Не составит большого труда построить такой генератор и получить при благоприятных атмосферных условиях интересные результаты.

Недавно д-р Р. Дж. Ван де Грааф в Массачусетском технологическом институте разработал замечательное устройство такого рода, в котором использованы обнаруженные в последнее время свойства и которое привлекает к себе исключительно большое внимание (см. «Scientific American» за 1934 год, февральский выпуск, с. 96). Оно названо революционизирующим изобретением, с помощью которого будут свершаться чудеса. Технические издания пишут о нем, как о колоссе, как о волшебном ключе, который, как полагают, откроет тайны природы. Вполне естественно, что одаренная богатым воображением пишущая братия построила воздушные замки на этом фундаменте. Дошло до того, что даже такое компетентное издание, как «New York Times», сообщает своим читателям о вероятном использовании этого генератора в передаче энергии на большие расстояния. Согласно простодушному сообщению в номере от 5 декабря 1933 года, «возможности поразительного генератора рассчитаны теоретически, и теперь осталось лишь применить их на практике». Каким бы утопическим этот проект ни представлялся, он не является абсолютно нереальным. Мудрый царь Македонии говорил: «Нет такой высокой стены, через которую мул, нагруженный золотом, не мог бы перепрыгнуть». Имея неограниченный капитал и не заботясь о выручке, можно осуществить и это.

В связи с многочисленными заметками и редакционными статьями, написанными в том же тоне, которые повергли в изумление непрофессионала и позабавили специалиста, было бы неплохо исследовать достоинства этого одиозного изобретения в свете полностью доказанных научных истин.

 

Ил. 1. Размещенный в авиационном ангаре генератор Ван де Граафа, по поводу которого доктор Тесла рассуждает в сопроводительной статье

 

Но сначала я хочу указать на явное несоответствие пояснительных описаний и фотографий, демонстрирующих работу аппарата, который, как видно из снимков, состоит из двух алюминиевых сфер диаметром 15 футов, укрепленных на изолированных колоннах шести футов в диаметре. Электричество подается в сферы с помощью бумажных конвейерных лент, заряженных от острия. Имея терминалы таких размеров, возможно получать гораздо большую разность потенциалов. Во множестве научных монографий предполагается, что поверхностная плотность заряда, т. е. количество электричества, накопленного на одном квадратном сантиметре сферического проводника, не может превышать восьми электростатических единиц, чтобы не допускать пробоя окружающего воздуха. В действительности же плотность можно увеличить до 20 единиц, прежде чем появятся расходующие энергию стримеры.


Если это так, то предельное напряжение сферы диаметром 15 футов должно составлять 16 964 700 вольт и, следовательно, разность потенциалов двух таких сфер, находящихся на весьма большом расстоянии одна от другой, составит 33 929 400 вольт. Однако следует, пожалуй, отметить, что, как показывают расчеты, такие большие сферы с расстоянием между центрами 55 футов будут в значительной степени воздействовать одна на другую, увеличивая собственную емкость. При таком расстоянии увеличение составит около 16 процентов, что следует учитывать, оценивая величину заряда.

Необходимая разность потенциалов может быть получена с гораздо меньшими сферами, что было бы, по-видимому, предпочтительно, так как они могли бы производить искровые разряды с большей частотой. Некоторые фотографии, сделанные при напряжении на терминале в 7 000 000 вольт, озадачивают, потому что поверхностная плотность в этом случае лишь немного превышала 4 электростатические единицы. Более того, видно, что разряды в изобилии проходят вдоль изоляционных опор. Это серьезная помеха, возникающая при работе с очень высокими напряжениями, но если внутренняя поверхность сферы профилирована должным образом, а сфера покоится на опоре, внутренняя часть которой хорошо подготовлена, то, кроме обеспечения достаточно большого бокового зазора, это предотвратит прохождение зарядов по колонне, и тогда можно не опасаться никаких новых проблем, даже при самых высоких напряжениях. Моя мачта в Лонг-Айленде, построенная в 1902 году, служила опорой для сферы, которая имела диаметр 67½ фута и была смонтирована именно таким образом. Ее заряд мог доходить до 30 000 000 вольт благодаря несложному устройству, которое обеспечивало получение статического электричества и подачу мощности.

Большинство людей, и среди них немало электротехников, могут подумать, что очень длинные и шумные искровые разряды свидетельствуют о большой энергии, но это далеко не так. Впечатляющее представление такого рода, напряжением в несколько миллионов вольт, можно без труда продемонстрировать в сухую погоду, имея какую-либо широкую кожаную или тканевую конвейерную ленту. Единственное требование состоит в том, чтобы наружные поверхности емкостных элементов с высоким зарядом имели идеальную форму с малой кривизной. Но электрическая энергия на выходе ничтожна, и это относится ко всем предлагаемым электростатическим генераторам независимо от габаритов.

Не нужно быть экспертом, чтобы понять, что устройство такого рода не является источником электричества, подобно динамо-машине, а только приемником, или конденсатором, со свойствами накопителя. Вся его энергия получена от электричества, которое генерируется благодаря трению или обеспечивается с помощью острия и нагнетания в терминалы посредством конвейерной ленты. Если бы мачты были высотой с «Эмпайр-стейт-билдинг», а диаметр сфер составлял 500 футов, то исполинское сооружение не могло бы иметь больше энергии, чем ему передается с помощью наэлектризованной ленточной передачи, и сколько ни улучшай, этот тип неизбежно обречен на небольшую выходную мощность и низкий КПД ввиду имеющихся ограничений и неэкономичности процесса перемещения зарядов от источников к терминалам.

 

Ил. 2. Вид снизу изоляционной колонны генератора Ван де Граафа с непрерывной бумажной лентой


 

Поскольку авторы статей о колоссе ограничиваются тем, что превозносят его размеры, вольтаж и возможности, но не дают ни малейшего намека относительно его режима работы и энергетических характеристик, я попытаюсь восполнить недостаток информации. С этой целью допустим, что сферы размещены на расстоянии 55 футов между их центрами и разность их потенциалов составляет 10 000 000 вольт. Обычно электрическая емкость такой сферы равна радиусу, в данном случае 225 сантиметров, но, как разъяснялось выше, к этому следует добавить 16 процентов, и тогда она составит 261 сантиметр, что эквивалентно увеличению емкости до 0,00029 микрофарады. Следовательно, когда режим работы стабилизируется и каждая сфера будет иметь потенциал 5 000 000 вольт, количество электричества, аккумулированного в каждой сфере, составит 0,00145 кулона. Если бы это количество поступало ежесекундно, сила тока достигла бы 0,00145 ампера. Лампа накаливания в 25 ватт требует ток в 150 раз большей силы.

При расчете количества электричества, поступающего на каждый терминал в секунду, заслуживает внимания только распылитель [устройство для получения и передачи зарядов], поскольку он обеспечивает гораздо большую генерацию, чем можно было бы получить, используя силу трения конвейерных лент. Четкого описания применяемого устройства не приводится, но в рамках этого трактата достаточно знать, что он работает при напряжении 20 000 вольт и посредством множества острий питает энергией обе конвейерные ленты, о которых известно, что их ширина равна четырем футам, или 120 сантиметрам. Допустим, что они движутся со скоростью 100 футов, или 3 000 сантиметров в секунду, тогда площадь, охватываемая за этот промежуток времени, составит 120×3 000 = 360000 квадратных сантиметров. Если бы было возможно заряжать ленты равномерно, достигая на поверхности интенсивности, примерно равной той, что несет на себе наэлектризованная частица, то выходная мощность установки была бы весьма большой. Но осуществить это невозможно. Нижеследующие ориентировочные расчеты покажут, на что, более или менее, можно рассчитывать.

Искровые разряды, исходящие с острий, изучены всесторонне, и, в результате имеющихся данных и моих собственных наблюдений, я считаю, что сила тока напряжением 20 000 вольт, проходящего через каждое острие, будет равна примерно 0,0001655 ампера. Очень частое расположение острий не даст преимущества по причине их взаимного реагирования, тем не менее я допускаю такое их количество, которое, по-видимому, будет реальным, скажем 200, и в таком случае весь ток в целом будет равен 200 × 0,0001655 = 0,0331 ампера.

Итак, электричество передается с острий на ленту с помощью мельчайших физических носителей — молекул воздуха. Когда такая наэлектризованная частица вступает в контакт с большим проводящим телом, она отдает ему почти весь свой заряд, но диэлектрику, такому, как лента, она может передать лишь очень малую долю по причине интенсивного отталкивания между зарядом отданным и тем, что остается на частице. Из аналитических расчетов следует, что практически воспринятая часть не будет, по всей вероятности, превышать 1/150 всего заряда на любой частице, выбрасываемой на ленту. Ток от острия достигает 0,0331 ампера, иными словами, он переносит совокупный заряд, количественно равный 0,0331 кулона в секунду, и от этого количества лента заберет только 0,00022 кулона, что эквивалентно току силой 0,00022 ампера. Это означает, что 99,33 процента энергии, обеспечиваемой острием, теряется, и это наглядно демонстрирует потрясающую неэффективность этого способа электризации.


Как будет показано, [распыляющее] устройство подает на каждую ленту энергию ничтожно малой мощности, равную 4,4 ватта, и, следовательно, не оказывает, фактически, никакого влияния на выходную мощность энергоустановки, за исключением того, что оно ограничивает ее возможности. Об этом важно помнить, принимая во внимание общее представление, созданное первыми известиями о том, что вся энергия сообщается распылителем. Поскольку количество электричества, накопившегося на сферах, остается неизменным, очевидно, что сбросовый ток между ними в нормальном рабочем режиме должен составлять 0,00022 ампера, так что при разности потенциалов в 10 000 000 энергоустановка должна развивать мощность 2 200 ватт.

 

Ил. 3. Вид генератора высокого напряжения в ином ракурсе. Предусмотрен рельсовый путь, с тем чтобы установку можно было выкатывать наружу

 

Поскольку заряд от задающего контура ничтожно мал, встает вопрос: откуда берется эта огромная энергия с ее мощностью? Как она производится? Ответ прост. Ее источником являются ленты, совершающие работу по перемещению зарядов, сообщаемых им вопреки отталкиванию, производимому сферами. Величину этой силы можно приблизительно вычислить. Постоянный заряд на сфере составляет, как было сказано выше, 0,00145 кулона, или 4 350 000 электростатических единиц. Но 16 процентов этого количества «связаны», и их не следует принимать во внимание. С учетом места установки можно полагать, что емкость свободной поверхности каждого терминала может составить, по расчетам, 222 сантиметра, так что при пяти миллионах вольт Q = 222 × 5 000 000/300 = 3 700 000 электростатических единиц. Перемещающийся заряд распространится по всей движущейся вверх ленте, длина которой равна высоте изоляционной колонны, и с учетом припусков длину 24 фута можно считать приемлемой. Если скорость движения ленты предположительно равна 6 000 футов в минуту, это расстояние будет пройдено за 0,24 секунды и, следовательно, заряд ленты, согласно расчетам, составит 0,24 от суммарного, перемещаемого за одну секунду, то есть 0,000528 кулона, или 158 400 электростатических единиц. Верхняя граница заряженного пространства находится на расстоянии 7 ½ фута, а нижняя — 31 ½ фута от центра сферы. Таким образом, у первой [границы] r = 225 см, а у второй d = 945 см. Если заряженная площадь ленты составляет 120 × 720 = 86 400 квадратных см, то отсюда следует, что плотность заряда равна 158 400/86 400 = 1,8333 электростатической единицы. Соответственно, если распределение заряда идеально однородно, поперечная полоса ленты длиной 1 сантиметр будет удерживать количество q = 120 × 1,8333 = 220 электростатических единиц.

Итак, обозначим поверхностный элемент, длина которого стремится к нулю, через dx, величина переносимого им заряда будет равна qdx = 220 dx электростатических единиц, а заряд на сфере Q = 3 700 000 электростатических единиц, отталкивающая сила, действующая на поверхностный элемент на расстоянии от центра сферы, будет равна Qq/x²dx. Интегрируя это выражение в пределах границ r и d и подставляя значения для Q и q, найдем силу, отталкивающую заряженную сторону ленты, по формуле

 

 

или 2,81093 килограмма. При скорости 100 футов, или 30 метров в секунду, работа равна 84,3279 кг·м/с, что эквивалентно 0,82691 киловатта. Следовательно, обе ленты будут совершать работу, требующую 1,65382 киловатта. Это на 33 процента меньше, чем гипотетическая электрическая работа установки, а поскольку энергия, переносимая лентами, должна быть по крайней мере равна электрической энергии, то кто-то с легкостью приходит к заключению, что съемные острия не забирают весь заряд полностью, как принято считать, и ток, вместо того чтобы иметь силу 0,00022 ампера, будет, соответственно, слабее, то есть сила тока составит 0,0001654 ампера. Но эта точка зрения несостоятельна, так как пределы рабочих параметров определяются физическими законами, а не дефектами устройства, которые к тому же можно с легкостью устранить. Несоответствие расчетной мощности лент и электрической активности установки тем более озадачивало, что обе эти величины не могут быть приведены в соответствие с помощью умозрительного эксплуатационного режима. Тем не менее я в конечном итоге согласился с тем, что заряд не может распределяться на ленте равномерно, но должен усиливаться по мере прохождения снизу вверх. Действительно, на такой эффект можно рассчитывать, несмотря на то что поверхностный заряд на изоляционном веществе малоподвижен.

Предположим, что лента покрыта масляной пленкой, подвергающейся воздействию нисходящего воздушного потока. Очевидным результатом будет постепенное утолщение слоя по мере приближения к верхней части. Подобным же образом электрический слой на ленте «утолщается» вследствие отталкивания, производимого терминалом, и происходит накопление заряда, из этого следует лишь то, что точное равновесие между механической и электрической энергией можно, при всех условиях, устанавливать автоматически (см. пояснение в конце статьи). Равенство этих двух величин является безусловным и неизбежным следствием закона сохранения энергии, при этом отличительное свойство этого процесса динамоэлектрического преобразования проявляется в том, что он осуществляется с высочайшим КПД, по всей видимости, без выделения тепла. Конечно, имеют место огромные потери в работе установки, но они не имеют отношения к самому процессу.

В приборе, предназначенном главным образом для научных исследований, коэффициент полезного действия имеет сравнительно небольшое значение, и я остановлюсь на этом единственно с целью показать, что при любом применении в качестве источника энергии генератор такого типа был бы безнадежно непригодным. Трение воздуха о ленты, движущиеся со скоростью 30 метров в секунду, потребляет 3,73 киловатта. С учетом отталкивания нагрузка на них составит 5,93 киловатта. При этих, изложенных вкратце, условиях эксплуатации коэффициент полезного действия ленточной передачи может составить 90 процентов, в двигателе — 85 процентов, так что расход энергии в электросети составит 7,75 киловатта. Полезная работа «распылителя» при напряжении 20 000 вольт потребует 1,324 киловатта, но, учитывая эффективность всей установки, следует, вероятно, допустить по крайней мере 1,6 киловатта. К тому же имеются диэлектрические, магнитные и радиационные потери, доводящие совокупные энергетические затраты, пожалуй, до 9,5 киловатта, в то время как выходная мощность составляет лишь 2,2 киловатта. Если этот приблизительный расчет достаточно близок к истине, суммарный коэффициент полезного действия всей установки 23 процента — это тот предел, какой можно ожидать от любого электростатического генератора такого типа.

Доказано, что при напряжении 5 000 000 вольт заряд на каждой сфере составляет 0,00145 кулона, но поскольку за секунду может проходить заряд величиной лишь 0,00022 кулона, потребуется 6,6 секунды для зарядки сфер до достижения максимально возможного потенциала. Я допускаю, что ток от распылителя поступает непрерывно, и он не является выпрямленным током, в противном случае отдача будет существенно меньше. Стримеры, исходящие от остроконечных электродов, считаются, по мнению многих, разновидностью коронного разряда, предполагающего незначительные потери энергии, но это суждение ошибочно. Это очень концентрированный разряд, к тому же настолько приближающийся по интенсивности к дуге, что иногда выделившаяся тепловая энергия накладывает ограничения на использование острий.

За неимением подробного описания невозможно точно определить рабочие характеристики этого сенсационного генератора, и фактические результаты могут отличаться от тех, на которые я указывал, но ненамного. Хотя выход энергии можно увеличить путем повышения напряжения на распылителе и большего количества разрядных и принимающих острий, существуют и ограничения. Совершенно очевидно, что такое хитроумное сооружение, каких бы крупных размеров оно ни было, представляется не более чем игрушкой по сравнению с промышленными установками, применяемыми для преобразования и передачи электрической энергии.

Ввиду этого, а также по причине низкого КПД его применение будет ограничиваться научными экспериментами, в которых практические результаты можно получить или путем применения слабого рабочего тока при высоком напряжении, или путем последовательных разрядов. Последний из названных способов представляется более перспективным, потому что при надлежащих условиях создается возможность разряжать сферы за промежуток времени, несравнимо более короткий, чем тот, который требуется на их зарядку, и это позволяет чрезвычайно увеличить интенсивность разрядов.

Любой прибор, работа которого зависит от статического электричества, перемещаемого движущейся лентой, подведет в сырую погоду, и, чтобы заставить его работать, необходимо иметь закрытое помещение, где воздушная среда должным образом кондиционирована. К тому же ленты имеют свойство разрушаться под воздействием озона, азотистой и азотной кислот, которые образуются при разрядах на остроконечных выступах.

Хотя в конструкцию и рабочие характеристики этого высоковольтного генератора не заложено ничего радикально нового, он тем не менее является определенным шагом вперед по сравнению с его предшественниками. Я, однако, считаю: то, что можно добиться с этим генератором благодаря преемственности исканий, может быть достигнуто, и даже с большим успехом, при использовании космических лучей. Более того, время, за которое заряженная частица перемещается от одного конца трубки до другого, столь коротко, что практически не имеет значения, является ток постоянным или переменным. Воспользовавшись последним, мы устраняем все ограничения в разности потенциалов и силы тока и, следовательно, интенсивности полезных эффектов, что и является основной целью.

Еще в 1899 году я проводил эксперименты при напряжении 18 000 000 вольт и в некоторых опытах я пропускал ток силой 1 100 ампер через воздух. Используя свои трансформаторы, беспрепятственно получал разность потенциалов 30 000 000 вольт или более того, а при теперешнем уровне развития технической мысли можно изготовить трубку или иное устройство, способное воспринимать весьма значительную энергию. Высказываю свое мнение не для того, чтобы дискредитировать электростатические генераторы, напротив, считаю, что когда появятся новые образцы и они будут в достаточной мере доработаны, их ожидает великое будущее.

На первый взгляд может показаться, что производительность такого генератора может быть удвоена путем использования свободной стороны ленты для удаления электричества с противоположным знаком. В этом случае отталкивание на одной стороне ленты будет уравновешиваться притяжением на другой, так что в идеале сферы могли бы заряжаться без энергетических затрат. Но это противоречит фундаментальным законам природы, и поэтому можно благополучно прийти к выводу, что такой проект нереален.

Статическое электричество можно в конечном счете приспособить для электропривода, и эта перспектива заманчива, принимая во внимание огромную выходную мощность такой машины при очень высоком напряжении. Генерирование с высоким КПД и управление энергией с такими характеристиками являются камнем преткновения в этой области. В качестве вызывающего интерес опыта можно выделить два блока описанного выше генератора и, таким образом, сымпровизировать электропривод. Это бы работало, но неэффективно.

Несмотря на полную очевидность того, что в этом аппарате заложены исключительно благоприятные рабочие характеристики для получения точных научных данных, весьма вероятно, что попытки расщепления атомного ядра и преобразования элементов принесут результаты сомнительной ценности. Конечно, большинство изобретателей и опытных специалистов, посвятивших себя решению этих иллюзорных задач, могли бы найти себе лучшее применение. Ядро представляет собой нейтральное тело, состоящее из плотно прилегающих одна к другой частиц того же вида, которые изначально были положительными и отрицательными. Когда ядро расщепляется, частицы вновь обретают свои заряды, все без исключения, и немедленно образуют нейтральные пары, так что мы напрасно старались. Глупо надеяться на пригодные к применению результаты от превращения [элементов], осуществляемого посредством такой бомбардировки ядер [элементарными частицами]. Если в этом направлении когда-нибудь и будет достигнут результат значительной ценности, это произойдет в случае применения квазиинтеллектуального фактора, вызывающего сортировку и систематизацию частиц и их упорядоченную расстановку, как это и положено при образовании новой структуры. Такой возможностью обладает катализатор, и это будет в конце концов освоено и успешно использовано для всевозможных целей.

Примечание автора. Пояснение к стр. 393.

Необходимое увеличение плотности можно определить с помощью несложного расчета. На распыляющих точках, благодаря их работе в постоянном режиме, найденное ранее значение 1,8333 не может измениться, но начиная с этого момента плотность будет возрастать, и в самой верхней части заряженного пространства она может равняться 1,8333 + а. Поскольку закон изменения совершенно не важен для этой переменной, можно допустить, что увеличение [плотности] пропорционально расстоянию от распыляющих точек. При таких условиях поперечная полоса ленты длиной один сантиметр, находясь на расстоянии X от центра сферы, будет иметь заряд

 

 

электростатических единиц. Следовательно, отталкивающая сила, проявляемая зарядом Q на терминале, будет равна

 

 

Этот интеграл легко решается путем разложения и дает значение

F = 2 756 352 — 1 088 367 а дин.

Механическая работа при обычной скорости ленты 3 000 сантиметров в секунду будет, следовательно, определяться как W = 0,8269056 + 0,3265101 а квт·с и должна приравниваться к электрической работе машины с током силой 0,00022 ампера при напряжении 5 000 000 вольт; а именно 1,1 квт·с для каждого терминала, так что

 

 

При такой избыточной плотности и распределении заряда, как изложено выше, полезная мощность обеих лент, выраженная в электрических единицах, составит 2,2 киловатта, что в точности соответствует КПД генератора с током силой 0,00022 ампера и напряжением на терминалах 10 000 000 вольт. Очевидно, что, подобно тому как вода находит свой горизонт, и этот баланс моментально устанавливается при любых рабочих условиях и реагирует на колебания величины заряда; другими словами, на снижение и повышение его поступательной скорости в соответствии с изменениями нагрузки.

«Scientific American», подшивка 150, № 3, 1934 г.

 







Date: 2016-11-17; view: 266; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.019 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию