Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Тесла отвечает Д-ру луису Данкану, объясняя свой мотор переменного тока 9 page





Однако вышеупомянутая проблема отсутствует, если тело, помещенное в углеродную чашку, обладает большой устойчивостью к разрушению. Например, если оксид сначала расплавить в пламени кислорода, а затем поместить его в лампу, он легко плавится и превращается в каплю.

Вообще, во время процесса плавления, были отмечены великолепные световые эффекты, которым трудно дать исчерпывающее толкование и объяснение.

Чем выше частота, тем больше отклонение от постоянного тока — худшее, что может быть для нити накаливания. Но если продемонстрирована истинность этого замечания, то неверно было бы полагать, что тугоплавкий электрод, который использовался в лампах, под действием тока очень высокой частоты должна разрушаться быстрее, чем под действием низкочастотного постоянного тока. По своему опыту я могу сказать, что все происходит совсем наоборот: электрод лучше противостоит бомбардировке под действием тока очень высокой частоты. Но это происходит потому, что высокочастотный разряд проходит через разреженный газ намного легче, чем разряд постоянный или низкочастотный. Это позволяет сделать вывод, что с разрядом постоянного тока мы можем работать при более низкой разности потенциалов, либо при менее сильном воздействии. Таким образом, до тех пор, пока газ не начинает оказывать влияние, постоянный или низкочастотный ток предпочтительнее, но как только действие газа усиливается, предпочтение отдается току высокой частоты.

В ходе этих экспериментов было проведено большое количество испытаний со всеми типами угольных электродов. Электроды сделанные из обычного углерода, несомненно, оказались более долговечными, чем электроды, сделанные с применением высокого давления. Электроды, которые изготовлялись хорошо известными способами осаждения угля, зарекомендовали себя не лучшим образом — от их использования сфера быстро покрывалась черным налетом. Основываясь на результатах многочисленных опытов, я сделал вывод, что нити ламп накаливания, полученные таким способом можно с успехом использовать только при низкой разности потенциалов и низкочастотном токе. Некоторые виды угля настолько сильно противостоят воздействию тока, что для того, чтобы довести их до раскаленного состояния, необходимо использовать очень маленькие по размеру электроды. В этом случае осуществление наблюдений сопряжено с большими трудностями, вызванными мощным тепловым излучением. Тем не менее, не вызывает сомнения тот факт, что вес типы углерода плавятся под воздействием молекулярной бомбардировки, а их жидкое состояние чрезвычайно нестабильно. Из всех типов испытанных веществ были выделены два, наиболее устойчивых — алмаз и карборунд. Эти два вещества имеют примерно одинаковые свойства, но последний предпочтительнее по многим причинам. Поскольку это вещество еще мало изучено, то я позволю себе привлечь к нему Ваше внимание и остановиться на нем более подробно.

Оно было получено недавно Е.Г. Ачесоном из города Мононгахела, США. Он намеревался заменить им обычный алмазный порошок в шлифовальных кругах и т. д. и насколько мне известно, его старания увенчались успехом. Я не знаю, почему этому материалу присвоили такое название "карборунд". Не исключаю, что такой выбор обосновали некоторые детали его промышленного получения. Благодаря любезности изобретателя, некоторое время назад я получил несколько образцов этого материала, которые я намеревался испытать на предмет качества свечения и способности противостоять воздействию высокой температуры.

Карборунд можно получить в двух формах — в форме кристалла и порошка. Невооруженному глазу кристаллы кажутся темным, но очень ярким; порошок по цвету очень близок к цвету обычного алмазного порошка, только намного более красив. При рассмотрении образцов кристаллов под микроскопом, мне показалось, что они не имеют определенной формы и больше напоминают частицы молотого каменного угля высокого качества. Большая их часть была непрозрачна, но встречались также прозрачные и даже цветные. Эти кристаллы представляют собой разновидность углерода, содержащего некоторое количество примесей, они необычайно твердые и устойчивы к разрушению в течение длительного времени даже в кислородном пламени. При воздействии на них пламенем кислородной горелки, они сначала спекаются в плотную массу, возможно, вследствие расплавления содержащихся в них примесей. Эта масса очень устойчива к действию пламени, и не плавится в течение длительного времени, но в конце концов после того, как возникнет медленное горение, или пламя, образуется стеклоподобный осадок. Я предполагаю, что это расплавленный оксид алюминия. В сильно спрессованном состоянии это вещество хорошо проводит электрический ток, но не так хорошо как обычный углерод. Порошок, каким-то образом полученный из кристаллов практически не проводит электрический ток. Он является великолепным материалом для шлифовки камней.

У меня было мало времени, чтобы сделать удовлетворительный анализ свойств этого вещества, но поэкспериментировав с ним несколько недель, я могу сказать, что оно обладает многими замечательными свойствами.

Он обладает исключительно высокой устойчивостью к высоким температурам, слабо разрушается при молекулярной бомбардировке и не загрязняет стеклянную сферу как обычный углерод. Есть только одна проблема, которую я обнаружил в ходе этих экспериментов — это проблема найти связывающие материалы, которые были бы столь же устойчивыми к воздействию тепла и бомбардировки, как и сам карборунд.

Здесь у меня есть несколько ламп, которые я оснастил электродами из карборунда. Чтобы изготовить такой электрод из кристалла карборунда, я поступил следующим образом. Я взял обычную нить накаливания и окунул ее в смолу, или другое плотное вещество, например, краску, которое может легко обугливаться. Затем я пропустил нить накаливания через кристаллы, и стал держать ее вертикально над горячей пластиной. Смола размягчилась и образовала каплю на конце нити накаливания, а кристаллы приклеились к поверхности капли. Регулируя расстояние от горячей пластины до смолы, я медленно высушил ее и электрод стал твердым. Затем я еще раз погрузил электрод в смолу и держал его над горячей пластиной до тех пор, пока смола не испарилась, оставив только твердую массу, которая прочно скрепила кристаллы. Если требовалось получить большой электрод, я повторял процесс несколько раз и обычно покрывал нить накаливания смолой на некоторое расстояние ниже капли с кристаллами.

Затем электрод устанавливался в лампе. После того как в лампе создавался сильным вакуум, я пропускал через нее сначала слабый, а затем сильный разряд для того, чтобы смола обгорела, и все газы были вытеснены. И только после этого я включал лампу на полную мощность.

При использовании порошка, наилучшим способом, который я смог найти, является следующий: Я сделал густую пасту из карборунда и смолы и пропустил через нее нить накаливания. Затем натер нить накаливания кусочком замши с нанесенной на нее пастой, после чего держал ее над горячей пластиной до тех пор, пока смола не испарилась, и покрытие не стало прочным. Я повторял этот процесс много раз, для того, чтобы получить необходимую толщину покрытия. На конце нити накаливания, уже покрытой смолой с порошком я таким же образом сформировал электрод.

Нет никаких сомнений в том, что такой электрод из карборунда, полученный при высоком давлении, особенно если он сделан из порошка наилучшего качества, будет устойчив к действию молекулярной бомбардировки, как никакое другое известное вещество. Проблема только в том, что связующий материал разрушается, и карборунд с течением времени постепенно осыпается. Поскольку он меньше всего загрязняет стеклянный шар, то он может оказаться полезным для покрытия нити накаливания в обычной лампе, и я даже думаю, что вполне можно сделать тонкие нити или стержни из карборунда, которые заменили бы обычные нити накаливания в лампах. Покрытие из карборунда оказалось более долговечным, чем другие, не только потому, что карборунд устойчив к действию высоких температур, но и потому, он лучше соединяется с углеродом, нежели другие испытанные мною вещества. Например, покрытие из циркония, или любого другого оксида разрушается намного быстрее. Я изготовил электрод из алмазной пыли таким же способом, как и из карборунда, но связующая паста разрушалась намного быстрее на алмазных электродах. Однако я отнес эти недостатки на счет неровностей алмазных частичек.

Было интересно найти ответ на вопрос, обладает ли карборунд способностью к свечению. Я был готов встретиться с двумя трудностями. Во-первых, как твердое вещество, в кристаллической форме он является хорошим проводником, а известно, что проводники не способны светиться. Во-вторых, его порошок очень мелкий, и не подходит для того, чтобы ярко продемонстрировать это качество, так как мы знаем, что когда кристаллы, даже такие как алмаз или рубин, находятся в виде мелкого порошка, их способность светиться существенно уменьшается.

Отсюда возникает вопрос, может ли светиться проводник? Что лишает такой материал как, например, металл, возможности светиться, если это свойство характеризует его как проводник? Общеизвестно, что большинство светящихся тел теряют это свойство, когда их нагревают до такой температуры, что они становятся в той, или иной степени электропроводными.

Таким образом, если металл будет в большой мере, а возможно и полностью лишен этой способности, он должен получить способность светиться. Следовательно, возможно, что при очень высокой частоте, когда он ведет себя как непроводник, металл или другой проводник может проявить способность к фосфоресценции, даже если он совершенно не способен светиться под действием низкочастотного разряда. Однако, возможен и другой способ вызвать свечение проводника.

До сих пор еще имеется много неясностей в отношении того, что же в реальности представляет собой фосфоресценция, и не называют ли этим термином разные явления, возникающие вследствие одних и тех же причин. Представьте себе, что в разреженной лампе под действием молекул поверхность куска металла или другого проводника начинает светиться ярким светом, но при этом обнаруживается, что он остается сравнительно холодным. Можно ли этот яркий свет назвать фосфоресценцией? Такой результат, по крайней мере, теоретически, возможен, это не более чем вопрос разности потенциалов или скорости. Предположим, что разность потенциалов на электроде, и, следовательно, скорость выбрасываемых атомов достаточно высоки. Тогда, поверхность куска металла, бомбардируемого атомами, должна сильно накаляется, поскольку процесс выработки тепла происходит несоизмеримо быстрее, чем излучение и отток тепла от поверхности. Глазу наблюдателя может показаться, что единичное столкновение атомов сопровождается мгновенной вспышкой, но если вспышки повторяются с достаточно высокой частотой, то они производят непрерывное воздействие на сетчатку глаза. При этом наблюдателю будет казаться, что поверхность металла имеет постоянный накал и светится с постоянной интенсивностью, тогда как в реальности, такой свет является прерывистым или, по крайней мере, периодически меняет свою интенсивность. Температура куска металла будет повышаться до тех пор, пока не установится состояние равновесия, т. е. до тех пор, пока непрерывно излучаемая энергия не будет равна поглощаемой. Однако в таких условиях вполне может сложиться ситуация, когда подаваемой энергии может оказаться недостаточно для того, чтобы повысить температуру тела свыше среднего значения, особенно тогда, когда частота атомных столкновений очень низкая — но достаточная для того, чтобы человеческий глаз не различал колебания интенсивности света. Тогда тело благодаря способу, которым оно получает энергию, должно излучать сильный свет, а температура тела должна быть ниже среднего значения. Как наблюдатель назовет полученный таким способом свет? Даже если анализ света покажет нечто определенное, он, вероятно, отнесет это к явлению фосфоресценции. Возможно, что таким образом и электропроводные, и неэлектропроводные тела могут поддерживаться в состоянии определенной интенсивности свечения, но энергия, необходимая для этого, очень сильно варьируется, в зависимости от природы и свойств тел. Эти и некоторые другие вышеупомянутые замечания умозрительного характера были сделаны просто для того, чтобы обозначить любопытные особенности переменного тока или электрических импульсов. С их помощью мы можем сделать так, чтобы при определенной средней температуре тело излучало бы больше света, чем оно могло бы излучить при той же температуре под действием постоянного тока. А также, мы можем довести тело до точки плавления, и чтобы при этом оно излучало меньше света, чем оно выделяет при температуре плавлении, достигнутой обычными способами. Все это зависит от того, как образом мы подаем энергию, и какой вид колебаний мы используем. В одном случае колебания больше, в другом — меньше, в зависимости от их восприятия нашими органами зрения.

Некоторые эффекты, полученные при первых же испытаниях с карборундом, и которые я до этого не наблюдал, я квалифицировал как фосфоресценцию, но из последующих экспериментов стало ясно, что это вещество не обладает данным качеством. Кристаллы карборунда обладают свойством, заслуживающим особого внимания. Например, в лампе с одним электродом в виде маленького круглого металлического диска, при определенной степени разрежения электрод покрывается пленкой молочно-белого цвета, которая отделена темным пространством от света, заполняющего лампу. Когда металлический диск покрыт кристаллами карборунда, пленка становится более интенсивной, а цвет ее становится снежно белым. Это, как я позже установил, является простым эффектом блестящей поверхности кристаллов, поскольку хорошо отполированный алюминиевый электрод создает более или менее похожий эффект. Я провел множество экспериментов с образцами полученных мною кристаллов, именно потому, что они вызывали особый интерес. Этот интерес заключался в изучении их способностей к фосфоресценции с учетом того, что они обладают свойствами проводника.

Мне не удалось получить отчетливое свечение, но следует заметить, что решающее мнение можно будет сформировать только тогда, когда будут проведены другие эксперименты в этой области.

В некоторых экспериментах поведение порошка было таким, как если бы он содержал оксид алюминия, но при этом он не становился сколь либо отчетливого красного цвета, столь присущего последнему. Сияние его тусклого цвета возникает в значительной степени под воздействием молекулярной бомбардировки, и сейчас я абсолютно уверен, что он не обладает способностью к фосфоресценции. Поскольку результаты испытаний порошка еще не окончательны, так как, возможно, порошок карборунда не ведет себя подобно фосфоресцирующим сульфидам, которые могут находиться в состоянии очень мелкой пыли и при этом не потерять способности к свечению. Он ведет себя подобно порошку алмазов, или рубинов. Поэтому, для того, чтобы провести решающий тест, необходимо поместить его в большую лампу и отполировать его поверхность.

Если карборунд докажет свою полезность в связи с этим и подобными экспериментами, то его главная ценность будет использована при изготовлении покрытий, тонких проводников, кнопочных или других электродов, хорошо противостоящих очень сильному нагреванию.

Получение небольшого электрода, выдерживающего высокие температуры, я считаю задачей величайшей важности в деле производства света. Это позволит нам с помощью токов очень высокой частоты, получать более чем в 20 раз большее количество света, нежели то, что сейчас от обычных ламп накаливания, при том же расходе энергии. Эта оценка может показаться излишне преувеличенной, но я думаю, что она близка к реальности. Поскольку это утверждение может быть неправильно понято, я думаю, что необходимо яснее осветить проблему, с которой мы столкнулись на этом направлении работ, и способ, которым, по моему мнению, ее можно разрешить.

Любой, кто начинает изучать эту проблему, полагает, что для этого нужна лампа с электродом, имеющим очень высокую степень накаливания. И это будет его ошибкой. Сильный накал электрода является необходимым злом, а вот что действительно необходимо, так это сильный накал газа, окружающего электрод. Другими словами, проблема заключена в поиске лампы, способной довести газовую массу до наивысшей степени накала. Чем больше накаливание, тем быстрее основные колебания, тем больше экономичность получения света. Однако для того, чтобы поддерживать газовую массу в стеклянном сосуде в состоянии наивысшей степени накала в стеклянном сосуде, необходимо оградить газовую массу от соприкосновения со стеклом, то есть удерживать газ как можно ближе к центру сферы.

В одном из сегодняшних экспериментов образовался кистевой электрический разряд на конце провода. Этот кистевой разряд представлял собой пламя, и являлся источником тепла и света. Он не излучал ни сколь-нибудь ощутимого тепла, ни интенсивного свечения. Но разве оттого, что оно не обжигает мою руку, оно в меньшей степени является пламенем? Разве оно меньше является пламенем, если не причиняет боль моим глазам своим ярким светом?

Проблемой является получение в лампе такого пламени, которое было бы значительно меньшего по размеру, но несравнимо более мощным. Если бы в нашем распоряжении имелись средства для выработки электрических импульсов существенно более высокой частоты, и средства для их передачи, то от лампы можно было бы избавиться совсем, если конечно она не использовалась для защиты электрода, или для экономии энергии, ограничивая собой распространение тепла. Но поскольку в нашем распоряжении нет таких средств, то мы вынуждены помещать электрод в лампу и разрежать в ней воздух. Это сделано только для того, чтобы обеспечить работу прибора, которая невозможна при обычном давлении воздуха. В лампе мы можем усилить действие до любой степени — вплоть до того, чтобы кистевой разряд излучал яркий свет.

Интенсивность излучаемого света зависит от частоты и разности потенциалов импульсов, а также от электрической плотности на поверхности электрода. Очень важно использовать как можно меньший по размеру электрод, это необходимо для увеличения плотности. Когда вокруг маленького электрода происходят интенсивные столкновения молекул, то он раскаляется до очень высокой температуры, но вокруг него находится масса сильно раскаленного газа, или фотосфера пламени, которая в сотни раз превышает объем электрода.

Если в лампе использован электрод с алмазом, карборундом или цирконием, то фотосфера может превосходить объем электрода более чем в тысячу раз. Если особо не вдумываться, то может показаться, что при таком сильном накаливании электрод сразу испарится, но при детальном рассмотрении оказывается, что теоретически этого быть не должно, и результаты экспериментов это подтверждают. Именно этот факт определяет главную ценность такого типа ламп в дальнейшем.

Вначале, когда бомбардировка только начинается, основная работа происходит на поверхности электрода, но когда образуется сильно электропроводная фотосфера, нагрузка на электрод уменьшается. Чем больше раскалена фотосфера, тем сильнее ее электропроводность приближается к электропроводности электрода. Таким образом твердое тело и газ формируют единое электропроводное тело. Следствием этого является то, что при дальнейшем усилении накаливания, больше нагрузки приходится на газ и меньше на электрод. Образование мощной фотосферы оказывается главным фактором, обеспечивающим защиту электрода. Конечно, эта защита относительна, и не следует полагать, что при усиление накаливания уменьшается разрушение электрода. Тем не менее, теоретически, этот результат должен получаться при чрезвычайно высоких частотах, при температуре, намного превышающую точку плавления большинства из известных тугоплавких материалов. Поэтому электрод, способный противостоять очень мощной бомбардировке и другим внешним воздействиям, останется неповрежденным вне зависимости от того, как долго он подвергался такому, но более слабому воздействию. Применительно к лампе накаливания имеются совершенно иные соображения. Там газ ни с чем не связан: вся работа совершается на нити накаливания и время существования лампы ограничено только скоростью, с которой увеличивается степень накаливания. Именно экономические причины заставляют нас эксплуатировать ее при слабом накаливании. Но если лампа накаливания работает от тока очень высокой частоты, то действием газа пренебречь уже нельзя и правила экономной работы должны быть в значительной степени изменены. Для того, чтобы работа лампы с одним, или двумя электродами была близка к идеальной, необходимо задействовать импульсы очень высокой частоты. Помимо всего прочего, высокая частота предоставляет два важных преимущества, которые играют самую важную роль в экономических расчетах производства света. Во-первых, разрушение электрода уменьшается из-за того, что мы используем множество слабых воздействий, вместо нескольких сильных, которые быстро разрушают структуру электрода. Во-вторых, она способствует образованию большой фотосферы.

Для того, чтобы свести к минимуму разрушение электрода, желательно, чтобы колебания были гармоничными, так как любые рывки ускоряют процесс разрушения. Электрод проработает дольше, если накаливание создается током или импульсами, получаемыми от высокочастотного генератора переменного. Колебания такого тока происходят более плавно, нежели импульсы, получаемые от катушки пробойного разряда. В последнем случае нет сомнений, что большинство повреждений происходят из-за сильных внезапных разрядов. Одной из причин потерь энергии в такой лампе является бомбардировка сферы. Когда разность потенциалов очень высока, молекулы испускаются с большой скоростью, они ударяются о стекло и обычно вызывают сильное свечение. Получается очень красивый эффект, но по экономическим соображениям его следует избегать или сводить к минимуму. В данном случае, бомбардировка сферы, как правило, не вызывает фосфоресценцию, и потери энергии от бомбардировки снижаются. Эти потери энергии в лампе очень сильно зависят от разности потенциалов импульсов и от электрической плотности на поверхности электрода. При использовании тока очень высокой частоты, потери энергии в результате бомбардировки существенно уменьшаются. Во-первых, потому, что для получения такого же количества работы требуется меньшая разность потенциалов. Во-вторых, потому, что вокруг электрода создается высоко электропроводная фотосфера. То же самое получилось бы, если электрод был бы намного больше, что равнозначно меньшей электрической плотности.

Но уменьшая разность потенциалов, или плотность разряда, мы получаем определенную выгоду, а именно: избегаем сильных возмущений, которые настолько сильно воздействуют на стекло, что это порой превосходит пределы его эластичности. Если частота будет достаточно высока, то потери энергии вследствие недостаточной эластичности стекла будут совершенно незначительны. Потери энергии, вызванные бомбардировкой сферы, можно уменьшить, если использовать два электрода вместо одного. В этом случае каждый из электродов может быть подсоединен к одной из клемм, либо, если предпочтение отдается использованию только одного провода, то один электрод может быть подсоединен к клемме, а другой заземлен, или подсоединен к изолированному телу с определенной площадью поверхности, например, к затенителю лампы. В последнем случае, если не применить некоторые дополнительные настройки, то один из электродов может светиться более интенсивно, чем другой.

Но в целом, мне представляется предпочтительным, при задействовании тока столь высокой частоты, использовать только один электрод и один токопроводящий провод. Я убежден, что для работы осветительных приборов ближайшего будущего не потребуется больше одного подводящего провода, и в любом случае, они не будут иметь внутренних проводов, поскольку необходимую энергию можно будет с успехом подавать через стекло. В экспериментальных лампах внутренний провод в большинстве случаев используется из соображений удобства, так как при применении конденсаторного покрытия (как, например, способом, показанным на рис. 22) возникают некоторые трудности при соединении частей, но этих трудностей не должно возникать, при промышленном производстве большого количества ламп. В противном случае энергия может передаваться через стекло, а также через провод, а при таких высоких частотах потери энергии очень малы. Такие осветительные приборы будут неизбежно требовать для своей работы очень высокой разности потенциалов, что в глазах практиков может иметь спорное будущее. На самом же деле, высокая разность потенциалов не вызывает возражений — по крайней мере если обеспечена надежная безопасность таких устройств.

Есть два пути достижения безопасности электрических приборов. Один — это использовать низкую разность потенциалов, другой — создать аппаратуру с такими параметрами, чтобы ее безопасность не зависела от используемого напряжения. Из двух путей, последний мне кажется лучшим потому, что в этом случае обеспечивается абсолютная безопасность, не зависящая от каких-либо стечений обстоятельств, когда использование даже низкого напряжения могло бы представлять опасность для жизни, или для имущества. Но практические условия требуют не только определения разумных размеров аппаратуры, они также требуют применения определенного типа энергии. Например, легко создать трансформатор, который бы работал от обычного генератора переменного тока низкого напряжения, и который мог бы вырабатывать напряжение, необходимое для работы фосфоресцирующей трубки с сильным вакуумом. При этом, несмотря на столь высокое напряжение, эта трубка абсолютно безопасна, поскольку электрический удар от нее не причинит никакого вреда. Однако такой трансформатор будет довольно дорогим, и по своей сути неэффективным. Более того, электрическая энергия, полученная от него, не может быть экономично использована для освещения. Экономика требует использования энергии в виде очень быстрых колебаний. Проблема получения света подобна проблеме воспроизведения колоколом звука высоких тонов, можно сказать даже звука, находящегося на грани восприятия человеком. Даже эти слова недостаточно экспрессивны, чтобы выразить, насколько удивительна чувствительность человеческого глаза. Мы можем выдавать мощные удары через длительные интервалы времени, затрачивая на это много энергии, и не получая при этом того, что хотим. Либо, мы можем воспроизвести и держать ноту путем частых мягких ударов, что уже будет ближе к искомому уровню затратам энергии. В получении света может быть только одно правило, в рамках рассмотренных здесь осветительных приборов — использовать ток самой высокой частоты, которую только можно получить, однако, возможности для получения и передачи импульсов такого типа, по крайней мере сейчас, сильно ограниченны. Как только мы решим использовать ток очень высокой частоты, обратный провод станет ненужным, и конструкции всех устройств упростятся. Используя очевидные возможности, мы получим такой же результат, как и при применении возвратного провода. Для этого достаточно подсоединить к лампе, или расположить в непосредственной близости от нее изолированное тело с определенной площадью поверхности. Конечно, поверхность должна быть тем меньше, чем больше используемая частота и разность потенциалов. Кроме того, это необходимо для увеличения экономичности лампы или другого устройства.

Этот план работы устройств сегодня был применен в нескольких случаях. Так, например, накаливание электрода происходило в результате обхвата лампы рукой, то при этом тело экспериментатора служило для усиления интенсивности действия. Использованная лампа была похожа на ту, что представлена на Рис. 19. Возбуждение катушки проводилось до небольшой разности потенциалов, не достаточной для того, чтобы довести электрод до раскаленного состояния, когда лампа висела на проводе, и недостаточной для того, чтобы выполнить эксперимент более подходящим способом. Электрод был сделан таким большим, чтобы прошло немало времени, прежде чем он раскалился в удерживаемой лампе. Конечно, контакт с лампой был совершенно необязателен. Используя довольно большую лампу с чрезвычайно маленьким электродом легко произвести регулировки таким образом, чтобы накал в лампе образовывался при простом приближении к ней экспериментатора на расстояние в несколько футов, и ослабевал при его удалении.

В другом эксперименте, когда возбуждалось свечение, была использована похожая лампа. Здесь вновь изначально разность потенциалов была недостаточной для того, чтобы возбудить фосфоресценцию, до тех пор, пока действие не было усилено. Однако в этом случае, для того чтобы продемонстрировать другое свойство, я дотрагиваюсь до цоколя лампы металлическим предметом, который держу в руке. Электрод в лампе представлял собой угольный электрод, настолько большую, что она не могла накалиться и тем самым испортить эффект, производимый свечением.

И вновь, как в одном из ранних экспериментов, была использована лампа, такая же, как изображенная на Рис. 12. В данном случае, при касании лампы одним или двумя пальцами, на внутренней стороне стекла проецировались одна или две тени. Прикосновение пальцем вызывало такой же эффект, как и применение внешнего отрицательно заряженного электрода в обычных условиях.

Во всех этих экспериментах усиление действия достигалось увеличением емкости на конце подводящего провода, присоединенного к клемме. Как правило, прибегать к таким средствам, не обязательно, можно даже обойтись и без такой высокой частоты тока, но если они имеются, то можно легче адаптировать лампу или трубку для подобных целей.

 

Например, на Рис. 24 изображена экспериментальная лампа, в верхней части которой имеется шейка n. На внешнюю часть шейки наносится покрытие из фольги, которую можно подключить к телу с большой поверхностью. Лампа, изображенная на Рис. 25, также может светиться, если покрытие из фольги на шейке n подключить к клемме, а внутренний провод — к изолирующей пластине. Если лампа установлена в гнезде, поддерживающем ее в вертикальном положении так, как это изображено на рисунке в поперечном сечении, то мощность лампы можно увеличить, если в шейку п поместить небольшое количество электропроводного материала.

Date: 2016-11-17; view: 319; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию